AD-A270 552
IWWHMW

Model Checking, Abstraction,
and Compositional Verification

David E. Long
July 1993
CMU-CS-93-178 ELECTE R
0cT 141993 §

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Edmund M. Clarke, Chair

This document bas been approved Randal E. Bryant
for public rslease and ;Gle' its ‘ Stephen D. Brookes
d. ! 1;3:;:«::-, \c_l__:icl-—.na Otna Gr“mberg’ The Technion

9 © 1993, David E. Long [

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development

Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543

under Contract F33615-90-C-1465, ARPA Order No. 7597, and in part by the National Science Foundation

- under Grant no. CCR-9005992, and in part by a National Science Foundation Graduate Fellowship, and in
part by the Semiconductor Research Corporation under Contract 92-DJ-294.

The views and conclusions contained in this document are those of the author and should not be inter-
preted as representing the official policies, either expressed or implied, of the National Science Foundation,
the Semiconductor Research Corporation or the U.S. government.

Keywords: Formal verification, Temporal logic, Model checking, Compositional Verifi-
cation, Abstraction, Mechanical verification, Futurebus+, Cache coherence, Protocol verifi
cation

DOCTORAL THESIS
in the field of
Computer Science

MODEL CHECKING, ABSTRACTION,

School of Computer Science

AND COMPOSITIONAL VERIFICATION

DAVID LONG

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

'oric QUALITY INSPECTED 3

Accesion For
NTIS CRa&d
DTI,, [.L\ij

U oo 2 ..edd

. CE

ACCEPTED
T o d M. (Qenly) 2. A 1943
/] THESIS COMMITTEE CHAIR) i DATE
Vpnss 2/ 3/7,3
DEPARTMENT HEAD " DATE
APPROVED:
(A=Y %/s/13
ﬁ—" DEAN v v DATE

Abstract

Because of the difficulty of adequately simulating large digital de-
signs, there has been a recent surge of interest in formal verification, in
which a mathematical model of the design is proved to satisfy a pre-
cise specification. Model checking is one formal verification technique.
It consists of checking that a finite-state model of the design satisfies
a specification given in temporal logic, which is a logic that can ex-
press properties involving the sequencing of events in time. One of
the main drawbacks of model checking is the state explosion problem.
This problem occurs in systems composed of multiple processes execut-
ing in parallel; the size of the state space generally grows exponentially
with the number of components. This thesis considers two methods for
avoiding the state explosion problem in the context of model checking:
compositional verification and abstraction.

In compositional verification, our goal is to check local properties
of the components in the design, deduce that these hold in the global
system, and then use them to prove the overall specification. With ab-
straction, we can hide internal state, replace complex data types with
simpler abstract ones, or simplify some of the timing behavior of the
components. Using a connection between the abstracted and unab-
stracted systems, we deduce that whatever properties we prove at the
abstract level also hold in the original system. We develop the nec-
essary framework for using these two techniques with model checking,
and demonstrate via a number of examples how they can be applied to
realistic systems. Our largest example is the cache coherence protocol
described in the [EEE Futurebus+ standard. In the course of the ver-
thication, we found errors in the standard, and proposed fixes for the
protocol.

Acknowledgements

[have been very fortunate to have Ed Clarke as my advisor through-
out my stay at Carnegie Mellon. Ed devotes considerable time and
energy to his students, and many of my ideas about verification and
about what constitutes interesting research arose from talks with him.
His insistence on motivation, discussions, and examples has hopefully
turned this thesis from a wasteland of formality into something read-
able. I was fortunate to be at CMU during the summers when Orna
Grumberg visited. Her enthusiasm is cuntagious, and collaborations
with her gave rise to many of the ideas presented here. Thanks also go
to Randy Bryant and Steve Brookes, the other members of my com-
mittee. Their suggestions and comments have improved the thesis in
numerous ways.

Much of my time at CMU was spent working with Jerry Burch and
Ken McMillan. Observing them has contributed greatly to my devel-
opment as a researcher. [especially enjoyed the countless talks with
Jerry over dinner at Uncle Sam’s Subs and The O. Had he not gradu-
ated and moved to California, I might never have had the motivation
to finish.

The facilities staff gets a big thank-you for keeping all the machines
in a very large department working smoothly. The administration in
the School of Computer Science also deserves credit for keeping the
creeping bureaucracy at bay. If | had been forced to deal with it, 1
would probably still be trying to fill out registration forms.

Finally, my parents and my sister gave me their constant love and
encouragement; [can never thank them enough.

Contents

1 Introduction
1.1 Scopeofthe Thesis
1.2 Related Work
1.2.1 Temporal logic
1.2.2 Efficient state-space search procedures
1.2.3 Compositional verification
1.2.4 Abstraction L.

2 Compositional Verification, Part I

2.1 CTL and Structures
2.2 Moore Machines oL
2.3 Moore Machinesand CTL
2.4 Compositional Verification and CTL
25 ACTL . ..o o
26 Summary
2.7 Technical Details
3 Compositional Verification, Part 1II
3.1 Assume-Guarantee Reasoning
3.2 Frameworko o oo
3.3 Structures
3.4 Simulation Relations
3.5 The Tableau Construction
3.6 Example: A Simple CPU Controller
3.7 Summary ... oL
3.8 Technical Details

11
13
14
14
14
15
17

10

4

L2y

7

A

CONTENTS
Abstraction . 121
4.1 Conservative Connections 122
4.2 Computing Abstractions 131
4.3 Example Abstractions 141
4.3.1 Congruence modulo an integer 143
4.3.2 Representation by logarithm 147
4.3.3 Single bit and product abstractions 1438
4.4 Abstraction Via Observers 149
4.5 Summary e 155
4.6 Technical Details 155
Symbolic Parameters 161
‘5.1 First-Order Quantification 161
5.2 Symbolic Abstractions 165
5.3 Symbolic Compositions 170
Verification of the Futurebus+ Cache Coherence Proto-
col 177
6.1 Overview of the Protocol 177
6.2 Modeling the Protocolo 137
6.3 Specifying Cache Coherence 191
6.4 Verifying the Protocol 194
6.5 Errors Discovered o 0oL, 196
6.6 Verifying Liveness 199
6.7 Summary 206
Conclusion 207

Summary of BDDs 211

Chapter 1

Introduction

With society’s increasing reliance on digital systems comes an increased
emphasis on their dependability. Design errors can lead to serious fail-
ures, resulting in the loss of time, money, and, in some cases, lives.
Further, even when an error is discovered during the design cycle, large
amounts of effort can be required to correct the problem, especially if
the error is found late in the process. For these reasons, we need meth-
ods that enable us to validate designs as early as possible. Traditionally,
simulation has been the main debugging technique. However, because
of the increasing complexity of digital systems, it is rapidly becoming
impossible to simulate large designs adequately. For this reason, there
has beeu a recent surge of interest in formal verification. In formal
verification, a mathematical model of the design is compared with a
formal specification describing the correctness criteria for the design.
The verification is ezhaustive: all possible behaviors of the model (and
its environment) are considered. Further, the model of the system can
be highly abstract, making it possible to check properties of a design
during the earliest stages of its development.

Most formal verification methods fall into one of two classes. In
proof-based methods, the designer constructs a mathematical proof, per-
haps with the aid of some automated support, that the model meets
its specification. Because the full power of mathematics is available,
such techniques are very flexible. It is possible to model systems at
almost any level of detail, and to prove properties of entire classes of
systems. The main drawback of such methods is that they require a

11

12 CHAPTER 1. INTRODUCTION

large amount of sophistication and effort on the part of the user. In
contrasi, state-crploration methods restrict the model to be finite-state
and use state space search algorithms to check automaticallv that the
specification is satisfied. Further, if the specification is false, then a
counterezample trace can be produced to show the user why this is
the case. This counterexample is invaluable in debugging the problem.
The state-exploration methods require less expertise to use, but they
do have some drawbacks. The most serious of these is the state ezx-
plosion problem. This problem arises in systems composed of multiple
components operating in parallel: the total number of states in the
system generally grows exponentially with the number of components.
This thesis is concerned with methods for attacking the state explosion
problem.

The particular type of state-exploration method that we will be
considering is called temporal logic model checking. Temporal logic is
a logic for specifying how propositions change over time without intro-
ducing time explicitly [82]. It is a convenient formalism for specifying
reactive systems (systems whose correct behavior is defined in terms of
their interaction with an environment, rather than, e.g., their output
upon termination) [75, 76]. In typical temporal logics, we have access to
temporal operators such as “always” or “eventually”. These operators
can be nested, allowing us to express complex conditions. For example,
we can specify that every time p is true, then at some later time ¢ must
be true by: “always, if p then eventually ¢”. Temporal logic has been
used extensively for specifying and verifying properties of hardware,
starting with the work of Malachi and Owicki [66] and Bochmann (3],
and most of our examples will be drawn from the area of computer
hardware. Early verification was done by manual proofs, and as a re-
sult only very small systems could be checked. Further, the process was
time-consuming and error-prone. (In fact, when Bochmann “verified”
an arbiter design due to Seitz [83], he had to make some simplifying as-
sumptions to make the proof manageable, and in the process, he missed
a bug that was later found by Dill and Clarke [44].) The introduction
of model checking procedures by Clarke and Emerson [27] and Quielle
and Sifakis [80] was the first step towards being able to handle more
realistic designs. In model checking, the design under consideration is
described by a finite-state transition system, and an algorithm is used

1.1. SCOPE OF THE THESIS 13

tu verify that this system satisfies the specification. The use of model
checking made it possible to find errors in nontrivial circuits which had
been carefully designed (15, 44].

1.1 Scope of the Thesis

We discuss two main methods for avoiding the state explosion problem
in the context of temporal logic model checking: compositional verifica-
tion and abstraction. The goal of compositional verification is to try to
take advantage of a given decomposition of the design into a number of
components running in parallel. In our approach, this wil! mean that
instead of forming the composition explicitly, we reason about small
groups of components and then use the “local” properties that we veri-
fied to check the global specification. In abstraction, we try to simplify
our models by hiding details. Verifying the simplified models is gener-
ally more efficient than checking properties of the original ones. When
using abstraction, we must establish a relationship between the abstract
models and the original ones, so that correctness at the abstract level
will imply correctness for the original system. Abstraction can take
many forms: we may hide parts of the system state, approximate com-
plex data types with simpler ones, or simplify the temporal behavior
of the design. In both cases, we are taking advantage of information
about the design in order to simplify the verification task. Successful
use of compositional verification requires some idea of how parts of the
design contribute to satisfying the given specification. When using ab-
straction, we must balance the desire to hide information with the need
to be able to prove the specification. This knowledge about the design
must come from the person performing the verification.
The principle contributions of this thesis are as follows:

I. A method for constructing compositional verification systems us-
ing different types of temporal logic, and a particular composi-
tional verification framework based on the logic CTL.

2. Methods for using abstraction within the above framework. We
consider techniques for hiding state, abstracting data values, and
abstracting complex timing behavior. We also develop ways of

I CHAPTER 1. INTRODUCTION

etficiently producing the abstract models without explicitly con-
structing the unabstracted ones.

3. Ways of using symbolic parameters together with the above meth-
ods. Symbolic parameters essentially allow us to verify entire
classes of properties or classes of systems simultaneously. In prac
tice, the complexity of this verification is usually not much greater
than the complexity of verifying an individual member of the
class. We demonstrate how the use of symbolic parameters can
greatly increase the power of our abstraction and compositional
verification techniques.

4. Verification of part of the IEEE Futurebus+ standard [59]. We
show that our techniques are practical by using them to vernfy
the Futurebus+ cache coherence protocol. The verification is of
independent interest as well, since we discovered errors in the

IEEE standard.

1.2 Related Work

1.2.1 Temporal logic

There are a variety of temporal logic model checking procedures using
a number of different logics [12, 27, 28, 33, 45, 64, 80, 92, 91. 95].
We will be concentrating on one particular logic, CTL [27]. and one
particular model of computation, but many of the ideas that we discuss
are applicable to other logics and models. In contrast to our work,
traditional model checking algorithms have dealt with the problem of
determining whether a closed system satisfies a given specification. Part
of our compositional verification framework is a tableau construction
relating formulas in our logic with finite-state processes. It has a flavor
similar to other tableau-like constructions [5, 24, 27, 46, 64, 78, 92. 95].

1.2.2 Efficient state-space search procedures

Much of the recent interest in forr. | verification methods has arisen
from powerful techniques for searching large state spaces. By using

1.2, RELATED WORK 15

binary decision diagrams (BDDs) (or more precisely, reduced, ordered
BDDs) 11, 17, 3] to represent transition systems and state sets, it is
possible to explore regular state spaces with extremely large numbers
of states [4, 9, 22, 23, 24, 36, 37, 38, 47, 48, 67, 89}. Partial-order ap-
proaches attempt to cut down the search space by ignoring irrelevant
interleavings of concurrent events in asynchronous systems [50, 67, 79,
90, 91]. All of these methods are useful for reducing the state explo-
sion problem, but they are largely orthogonal to the methods that we
consider. We do, however, make extensive use of the BDD-based tech-
niques. They provide a powerful and flexible symbolic manipulation
facility for working with sets and relations over finite domains. (A brief
summary of BDDs is given in appendix A.)

1.2.3 Compositional verification

In this subsection, we survey methods designed to take advantage of
the decomposition of a system into processes in order to simplify verifi-
cation. Local model checking algorithms (33, 86, 94] based on logics like
the propositional p-calculus use a tableau-based procedure to deduce
that a specific state (the initial state of the system) satisfies a given
logical formula. The state space can be generated as needed in such
an algorithm, and for some formulas, only a small portion of the space
may have to be examined. Thus, by having a representation in terms
of a set of components and producing global states only when required,
it is sometimes possible to save significant time and space. The main
drawback of these algorithms is that often the entire global state space
is generated (for example, when checking that a property holds at every
reachable state).

Winskel [93] proposes a method for decomposing logical specifica-
tions in the propositional pg-caleulus into properties which the com-
ponents of a system must satisfy for the specification to hold. The
approach is appealing, but as might be expected, dealing with paral-
lel composition is difficult. In our work, it is up to the user to derive
appropriate specifications for the individual components.

Graf and Steffen [51] describe a method for gencrating a reduced
version of the global state space given a description of how the sys-
tem is structured and specifications of how the components interact.

16 CHAPTER 1. INTRODUCTION

('larke, Long and McMillan (31, 32] describe a similar attei. nt. Both
methods will still produce large state graphs if most of the states in the
system are not equivalent, and much of the verification must be redone
if part of the system changes. Shtadler and Grumberg [84] show how
to verify networks of processes whose structure is described by gram-
mars. In this approach, which involves finding the global behavior of
each component, networks of arbitrary complexity can be verified by
checking one representative system. For many systems, however, the
number of states may still be prohibitive. While all of these methods
do take advantage of the process structure, they are still constructing
some form of a global state graph.

Compositionality is one of the main motivations behind the work on
process algebras [7, 53, 57, T1]. By using equivalences or preorders, it is
possible to construct hierarchical proofs of correctness of systems. At
each stage, a small group of components is combined, internal actions
are hidden, and the product is reduced. There are also links between
the. equivalences and preorders and various modal logics [53. 56]. One
of our original approaches to compositional verification had much the
same flavor: it was based on an equivalence between processes and a
relationship between logical satisfaction and the equivalence [31].

Trace- and language-based methods (21, 43, 62] also support com-
positional verification. These methods are based on inclusion between
sets of traces or sets of strings, and hence provide a natural framework
for doing hierarchical correctness proofs. The approaches generally use
linear-time semantics, while we will be concentrating on branching-time
semantics and specifications in a temporal logic.

In 1984, Pnueli proposed the assume-guarantee paradigm for reason-
ing about concurrent systems [77]. In Pnueli’s framework, we reason
with triples ol the form ()M (¥), where ¢ represents an assumption
about the environment of M, and ¢ is a guarantee about what will be
true when this assumption holds. This approach is a powerful method
for reasoning about concurrent systems. Pnueli used linear-time tempo-
ral logic (LTL) and a shared-memory process model. As most of our ex-
amples come from the hardware domain, this form of communication is
not particularly appropriate. However, we would still like to be able to
nse the assume-guarantee paradigm. Our goal in chapters 2 and 3 will
be to adapt the paradigm to a more traditional state-machine model.

1.2. RELATED WORK 17

We also demonstrate the practical value of the approach on a significant
example, the Futurebus+ cache coherence protocol.

Josko (60] has developed a compositional verification methodology
based on CTL. In his approach, specifications are given in a restricted
form of CTL (essentially ACTL, as considered in section 2.5). As-
sumptions about the environment are given by a class of LTL formulas
that are also expressible in ACTL. He gives an algorithm for check-
ing whether a formula holds for a state machine given an assumption
about the environment. The algorithm is based on labeling proce-
dure that annotates states with subformulas of the specification and
derivatives [19] of the assumption. The system does support assume-
guarantee style reasoning. However, the algorithm is fairly ad hoc, the
set of assumptions that can be expressed is restricted, and the method
is not suitable for hierarchical verificacion or for using finite state in-
duction techniques (63, 97]. Our approach does not suffer from these
drawbacks.

Shurek and Grumberg [85] describe criteria for obtaining a com-
positional framework, and illustrate the idea using CTL* with only
universal path quantifiers. This system is closest to the work presented
in chapters 2 and 3. However, they give no provisions for handling fair-
ness efficiently, using formulas as assumptions, or supporting temporal
reasoning. For completeness purposes, models in their system are also
associated with a fixed decomposition into components. Their overall
focus is on proof systems and general aspects of modular verification,
while ours is on demonstrating that these ideas are practical and can
be used to simplify the verification of real systems.

1.2.4 Abstraction

Our main goal in using abstraction is to verify systems that manipu-
late data in nontrivial ways. Recently, symbolic model checking tech-
niques (23, 24, 39, 67] have been used to handle circuits with data paths.
The symbolic representations are able to capture much of the regularity
in typical data manipulations. However, these methods are still unable
to deal with some systems of realistic complexity. Our methods are
designed 1o complement these techniques.

Wolper [96] has described how to use model checking to verify data

18 CHAPTER 1. INTRODUCTION

independent systems. These are systems where the stored data values
do not affect the course of the computation. For example, a protocol
whose only function is to move data from a sender to a receiver (with no
error checking, etc.) is typically data independent. Model checking for
such systems can be done using only the control structure; the data can
be abstracted away entirely. Unfortunately, many interesting systems
are not data independent. In contrast, our techniques can cope with
systems that are not data independent.

Van Aelten et al. [1] discuss a method for simplifying the verifi-
cation of synchronous processors by abstracting away the data path.
Their technique is to derive correctness conditions for the control cir-
cuitry by using a schedule of data path operations in the form of a
signal flow graph (SFG). The data path is verified in a separate step.
Claesen et al. [25] also discuss techniques for verifying digital signal
processors against SFGs. These procedures are very specialized and
efficient, but they cannot handle general properties: in a sense they
just compare the control circuitry with the property specified by the
SFG. Fujita [49] describes a method for verifying circuits with data
paths by translating temporal logic specifications for the whole circuit
into specifications involving only the control circuitry. In all of these
approaches, dealing with feedback from the data path to the control
circuitry is somewhat awkward. Corella [35] discusses a method for
verifying circuits with data paths against algorithmic-level specifica-
tions. His approach involves constructing a state graph in which the
data register values are terms built from variables and uninterpreted
function symbols. The actual data path elements are verified sepa-
rately. The method is not guaranteed to terminate, and it may give
false negatives due to properties of the data path operations, but it
has the advantage of being independent of data path width. It is not
clear that it can be implemented using BDD-based representations, so
it may not be able to handle circuits with complex control logic. Our
use of symbolic parameters together with abstraction does not allow us
to separate completely the control and data paths, but it does greatly
simplify the verification. Further, our approach handles general prop-
erties and feedback from the data path to the control with ease.

Kurshan [62] did much of the pioneering work on using abstrac-
tion to verify finite-state systems. His approach has been automated

1.2. RELATED WORK 19

in the COSPAN verification system {53, 54]. The basic notion of cor-
rectness is one of J-language containment. Further, the user may use
abstract mode' of the system and specification in order to reduce the
complexity of che test for containment. To ensure soundness, the user
specifies homomorphisms between the actual and abstract processes.
These homomorphic reductions are checked automatically. Our work
differs from Kurshan's in the following ways:

1. We are working in a branching-time rather than a linear-time
framework. We concentrate on the use of temporal logics for
specification.

o

The abstractions that we use correspond to language homomor-
phisms induced by boolean algebra homomorphisms in Kurshan’s
work. For this type of abstraction, we show how to derive auto-
matically an approzimation to the abstracted system. The ap-
proximation is constructed directly from a high-level representa-
tion of system (e.g., as a program in a finite-state language). It
is not necessary to examine the state space of the unabstracted
machine. Because of this, constructing the approximation is quite
efficient. We demonstrate by example that this form of abstrac-
tion is powerful enough and that the approximation is accurate
enough to allow us to verify interesting properties.

3. We show how to use symbolic parameters to increase the power
of abstraction for verifying data-dependent systems.

General frameworks for abstraction are discussed by Burch (21} and
by Bensaiem et al. [6]. Burch’s work is in the context of trace theory. He
defines the notion of a conservative approzimation between trace struc-
tures at different levels of abstraction. The approach of Kurshan can
be viewed as a particular type of conservative approximation. Burch
considers mainly applications to the verification of real-time systems.
Bensalem et al. use the notion of a Galois connection between sets of
states of two processes to define what it means for one process to be
an abstraction of another. They also discuss the preservation of logical
properties in the p-calculus between abstract and concrete processes.
The approach that we have chosen for formalizing our notion of ab-
straction is a type of cross between conservative approximations and

20 CHAPTER 1. INTRODUCTION

Galois connections. While both Burch and Bensalem et al. concentrate
mainly on producing a theoretical framework, our emphasis is on ef-
ficiently producing abstract transition systems, combining abstraction
with symbolic parameters, and demonstrating the application of these
facilities to nontrivial examples.

The techniques that we use for efficiently producing abstract mod-
els from high-level representations are similar to those used in abstract
interpretation (40, 41, 73, 74]. Abstract interpretation is a powerful
method for program analysis that is based on constructing an abstract
semantics for the programming language and then “executing” the pro-
gram using these semantics. The semantics is designed so that this
abstract execution always terminates. Abstract interpretation is used
mainly to infer information that can help in generating more efficient
code when compiling the program. As such, most abstract interpreta-
tions are designed to capture static information (e.g., what variables
are live at this program point? are these two pointers ever aliased? is
there a linear relation between these index variables?). When verifying
reactive systems, it is the dynamic behavior of the system that is of
interest. Further, abstract interpretations are generally constructed to
collect a fixed type of information about programs in a fixed target
language. In our work, the user has the flexibility to construct new
abstractions dynamically and even to extend the description language.
We then use symbolic manipulation techniques to produce automati-
cally an appropriate abstract semantics.

Other techniques for producing reduced models have been proposed
by Bouajjani et al. {10] and Dams, Grumberg and Gerth [42]. These
approaches involve refining a partition of the set of states until a model
which is minimal (in an appropriate sense) is obtained. While these
procedures can make use of BDD-based representations for individual
elements of the partition, the final result is essentially an explicit-state
representation of the reduced model. Hence, when there are many be-
haviorally distinguishable states, these procedures may not be feasible.
In contrast, our approach directly produces BDDs representing the ab-
stract system.

Chapter 2

Compositional Verification,

Part 1

In this chapter, we consider methods for using compositional model
checking to avoid the state explosion problem. The idea behind com-
positional methods is to exploit the natural decomposition of a system
into communicating parallel processes. We will try to verify proper-
vies of individual components, infer that these properties hold in the
complete system, and use them to deduce additional properties. The
second step, inferring that local properties houd in the complete system,
is the key requirement for compositional verificativn. Thus, we wish to
examine the compositional model checking problem: how do we check
that a specification is true of all systems that can be built using a given
component? Below, we introduce the temporal logic CTL, show how
it can be used to specify properties, and discuss the Moore machine
model for finite state systems. We prove that the compositional model
checking problem for full CTL is hard. Motivated by this result, we
show that for a subset of CTL that we call ACTL, the problem is ef-
ficiently decidable. In subsequent chapters, we will use ACTL as the
basis for doing full assume-guarantee style compositional reasoning and
for using abstraction to simplify the verification of tempc:. . »=- nerties.

21

22 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

2.1 CTL and Structures

Temporal logic is a logic for expressing the relative ordering of events
in time without mentioning time explicitly. We will be using a tem-
poral logic called CTL (“Computation Tree Logic”) [27] as our basic
specification for nalism. Formulas in CTL are built up from:

1. atomic formulas, that express information about what is observ-
able in a single system state;

2. the usual boolean connectives; and

3. temporal operators, that express how things change over time.

All temporal operators in CTL are interpreted relative to an implicit
“current state”, and each operator consists of two parts. The first is
called a path quantifier and is either A or E. A denotes that something
should be true of all “paths” (executions, expressed as sequences of
states) starting at the current state. In contrast, E is used to specify
the existence of a path with a certain property. The second part of a
temporal operator is either X, U, or V. These are used to describe the
ordering of events along the path or paths indicated by the A or E.
The intuitive meanings of X, U, and V are as follows:

1. Xp: X is read as “next time”. X is true of a path if the
formula ¢ is true at the second state on the path. Thus, X is
used to express properties about the immediate successors of the
current state.

2. ¢ Uy U is the “until” operator. A path satisfies ¢ U ¢ if:

(a) there is some state on the path satisfying ¥; and

(b) for all the preceding states, ¢ is true.
Thus, ¢ is true up until a point where 1 is true.

3. ¢ Vi: The V operator is the dual of U and is read as “releases”.
A path satisfies o V ¢ if ¥ is true at the current state, and y
remains true up to and including the first point where p is true.
There is no requirement that p ever become true, but when it
does, it “releases” the requirement that ¢ be true.

2.1. CTL AND STRUCTURES ' 23

In a moment, we will look at some example specifications in CTL, but
first, we give the formal definition of the class of C'TL formulas. For the
atomic formulas, we will assume that there is a set A of visible state
components that we can observe. In a given state of our system, each
component will have a specific value. We will assume that there is a
set D, of possible values for the state component a.

Definition 2.1 The logic CTL over a set of state components A is the
set of formulas given by the following inductive definition:

1. The constant true is an atomic formula.

2. For each state component a in A and element d of D,, a = d is
an atomic formula.

3. If ¢ and ¥ are formulas, then —¢ and ¢ A ¥ are formulas.

4. If ¢ and ¥ are formulas, then AX ¢, A(¢ V¢) and A(¢eU1) are

formulas.

We will use the following abbreviations:

Abbreviation | Meaning

false ~true

YV —(—p A ~Y)
=Y e VY

pdY (P A=)V (~p Ay)
&Y ~(p @ ¥)
EXy -~ AX -~p

E(x Uy) ~A(~p V -y)
E(¢ V ¢) —~A(~p U)
AGy A(false V @)
AF ¢ A(true U @)
EGy E(false V ¢)
EF ¢ E(true U ¢)

Some of the operators are viewed as abbreviations for two reasons.

First, by expressing E using the duality — A -, we reduce the num-
ber of temporal operators that we have to consider when giving se-
mantics or doing proofs. Second, certain patterns such as A(true U

24 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

) and A(false V p) occur often enough that it is convenient to have a
special shorthand for them. F and G are intended to express eventual-
ity and invariance respectively. F ¢ is true of a path when ¢ must hold
at some state on the path (at some point in the “future”). G ¢ is true
of a path when ¢ is true at every state on the path (is true “globally”).

Let us now consider some example CTL formulas and their intuitive
meanings.

l. AG(req = 1 — AFack = 1): This formula states that for all
reachable states (AG), if the state satisfies req = 1 (“a request is
made”), then at some later point (AF) we must encounter a state
with ack = 1 (“an acknowledgment is received”). Note that the
AF is interpreted relative to the state where req = 1. The outer
AG is interpreted starting with the initial states of the system.

2. AG AF enabled = 1: No matter what state we reach, at some
later pointer we must encounter a state where enabled = 1. Note
that after we pass a state where enabled is 1, then we must reach
yet another such state. In other words, enabled must be 1 i
finitely often.

3. AGEF restart = 1: For any reachable state, there must ex-
ist a path starting at that state that leads to a state satisfying
restart = 1. It must always be possible to “restart the system”.

Formally, CTL formulas are interpreted relative to a type of state
transition system. The particular type of state transition system has
traditionally been called a Kripke structure, after Kripke [2]. The only
difference between our definition (below) and the traditional definition
is that the visible state components in our transition systems may range
over non-boolean domains. We will also abbreviate the name to just
“structure”.

Definition 2.2 A structure M = (S,I,R, A, L) is a tuple of the fol-
lowing form:

1. S is set of states.

2. I C S is a set of initial states.

26 CHAPTER 2. COMPOSITIONAL VERIFICATION. PART I

Figure 2.1: A structure

Next, we give the semantics of CTL relative to a structure. In
the following definition, we use comp(y) to denote the visible state
components mentioned by the CTL formula ¢. (The formal definition
of comp is deferred.)

Definitinn 2.4 Let M be a structure and ¢ be a CTL formula with
A D comp(p). Satisfaction of ¢ by a state s of M, denoted by M, s
@, i1s defined as follows:

1. M,s }: true.
2. M,skEa=diff L(s,a) = d.

3. M,s E ~p iff it is not the case that M,s | ¢.
M,sEpeANYif M,skEpand M, s = 9.

4. Below, we use 7 to denote a sequence of states sysysy... from
§ = Sg. '
(a) M,s = AX g iff for every m, M, s | ¢.

(b) M,s E A(p U ¢) iff for every m, there exists ; such that
M,s; =y and forall 1 < 3, M,s; = ¢.

(8]
-~

2.1. CTL AND STRUCTURES

(c) M,s = A(p V o) iff for all j, if ¢ is not satisfied at s; for
any i < j, then M,s; = .

o is true of M (M = @) if for every s € [, M,s = .

Later, we will occasionally have a need for fized point characteri-
zations of the CTL operators [27]. Suppose that S is a finite set of
states and that F is a function mapping subsets of S to subsets of 5.
Also, assume that F is monotonic: if §; C S2, then F(S5,) C F(S;). A
fized point of F is a set of states Sy such that S, = F(5,). By Tarski’s
theorem [88], F has unique least and greatest fixed points (under the
set inclusion ordering). The CTL operators involving U and V (and
hence F and G) can be expressed as fixed points of an appropriate F.
Below, we assume that all states in the structure have successors.

Consider, for example, a formula such as A(p U). Let us assume
that we know the sets of states S, and S, where © and ¢ are true,
respectively. A state will satisfy A(p U o) iff it either satisfies ¥ 1m-
mediately (is an element of Sy), or if it satisfies ¢ (is in S,) and all
of its successors satisfy A(p U 9). If we let Sp(,Uy) denote the states
satisfying A(y U ¢), then symbolically we have:

SA(WU#I) == Sdl U (S¢ N AX SA(¢U¢))

This suggests that A(p U 1) can be expressed as a fixed point of the
function
F(S]) = Sw U (Sw n AX S])
In fact, the set of states satisfying A(¢Uv) is the least fixed point of this
function. The least fixed point can be computed by starting with @ as an
initial approximation and then repeatedly applying F. Eventually we
will reach stability since the set of states is finite. Algorithmically, we
begin with no states that are known to satisfy A(@Uw). After applying
F once, we obtain S, as our approximation. At each successive step,
any states that satisfy ¢ and whose successors are all known to satisfy
A(p U o) will be added to the approximation.
Similarly, A(¢ V) is the greatest fixed point of the function

F(S1) = Sy N (S, UAXS)).

Fixed point characterizations for operators such as AG and EG can
be derived by expressing these operators in terms of the ones above.

28 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

2.2 Moore Machines

We now consider one class of systems that we would like to verify: syn-
chronous digital circuits. Such a circuit consists of a number of latches
or state-holding registers, plus logic that updates these latches based
on the current state of the system and inputs from the environment.
There is a global clock, and during each clock cycle, the values in the
latches and the inputs are used to drive the logic and compute the next
state value of the system. One common model for systems such as this
is the Moore machine [72]. A Moore machine is a kind of state transi-
tion system with distinct inputs and outputs. During each step of the
computation of a Mooure machine, the environment supplies an input.
the machine makes a transition, and, based on the final state, gives an
output. The formal definition is as follows.

Definition 2.5 A Moore machine M = (S, 1, A, Ao, R, L) is a tuple
of the following form:

I. S is a set of states.
2. [C S is a nonempty set of initial states.

3. Ay is a set of input state components. Each element a of /1 has
a corresponding domain D, of possible values.

4. Ao is a set of output state compounents. Each element « of Ay
has a corresponding domain D, of possible values.

5. R is a transition relation, relating a starting state in S, a labeling
functioi over A;, and an ending state in S. For every sy € S and
labeling function f over A;, there must exist some s, € S such

that R(so, f,s1).

6. L is a function that takes a state and an output state component «
aud returns an element of D,.

The sets of input and output state components must be disjoint.

2.2. MOORE MACHINES . 29

Note that we allow our Moore machines to be nondeterministic.
That is, for one particular input, we may have transitions to two states
with the same output labeling. Synchronous circuits are deterministic,
but we often want to use nondeterminism in modeling. As we will sec
in later examples, nondeterminism allows us to:

1. model classes of circuits or incompletely specified designs; and

2. hide internal state and simplify the verification process.

Example 2.2 The circuit shown in figure 2.2 is un implementation
of the protocol described in example 2.1. [t consists of two registers,
r and p, and has one input a. The initial value in the registers is
assumed to be logic 0. The Moore machine corresponding to this circuit

e D -

a —

Figure 2.2: A handshake circuit

is shown in figure 2.3. The state labelings and initial states are indicated
as in our earlier example. Conditions on the arcs are used to give the
input conditions under which the transition can be taken. a

Moore machines that have disjoint sets of output state components
can be composed in a natural way. In a composition of two Moore
machines, each machine may receive some of its inputs from the other
element of the composition and some of its inputs from the (as yet
unspecified) environment. The composed machine has as outputs all
of the outputs of the components. Its inputs are all those inputs that
are not tied to outputs from other components during the composition.
At the circuit level, Moore machine composition corresponds to wiring
outputs from each machine to appropriate inputs of the other.

30 CH.:PTER 2. COMPOSITIONAL VERIFICATION, PART |

Figure 2.3: Moore machine for the circuit of figure 2.2

Example 2.3 The circuit shown in figure 2.4 is a possible environment
for the circuit of example 2.2. It receives requests via the input r and
gives acknowledgments using the output a. It also has an output ¢
that becomes | when it first produces an acknowledgment. When we
compose the two circuits, the r output of the circuit in figure 2.2 is tied
to the input r of the circuit in figure 2.4. Similarly, the output a of the
circuit in figure 2.4 drives the a input. of the circuit in figure 2.2. The
overall circuit is shown in figure 2.5. a

Definition 2.6 The composition of Moore machines M and M’ (de-
noted M || M') is defined when Ap N Ay = @ and is then the Moore
machine M" defined by: ‘

1. §"=85x§"
2. 1"=1x 1T
3. s ,l’ = (1‘1] - f"()) U (44” - /‘O).

1. Al = Ao U A,

MOORE MACHINES 31

[
L

Figure 2.4: Environment for the circuit of figure 2.2

[

[
b

Figure 2.5: Composed circuit

32 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

5. R"((s0,5¢), f",(s1,81)) iff R(s0, f,s1)and R'(sg, f',s1), where f =
F'U(L'(sp) L Ar) and f' = f”"U(L(s¢) | A}). The idea here is to
say that:

(a) each machine must take a step; and

(b) the inputs that each machine sees are the inputs from the
overall environment plus the outputs from the other machine
in the composition.

We are using U and | to denote enlarging and restricting the
domain of a labeling function. L'(sy)] A is the labeling function
whose domain is dom(L'(sy)) N A; and which agrees with L'(sy)
on this set. In other words, it represents the outputs of M’ that
M is going to observe. f” U (L'(sy) | Ar) is the labeling function
with domain dom(f")U(dom(L'(sy)) | A;) that agrees with f” on
dom(f") and with L'(sy) on dom(L'(s()) | Ar. Thus, it represents
all the inputs to M: those from the external environment (f”)

and those from M’ (L'(sp) | Ar)-
6. L"((s,s")) = L(s)u L'(s").

Example 2.4 The Moore machine for the circuit of figure 2.4 is shown
in figure 2.6. Composing this Moore machine with the Moore machine
of figure 2.3 yields the Moore machine shown in figure 2.7. (Here we are
shewing only the reachable states of the composition.) On examining
the result of the composition, we see that it does in fact represent the
composite circuit (figure 2.5). o

2.3 Moore Machines and CTL

We now have two models of computation: structures and Moore ma-
chines. We also have a temporal logic, CTL, whose semantics are de-
fined over the former. In this section, we consider the question of how
to define the semantics of CTL for Moore machines. Recall our pre-
vious circnit example. In our composed circnit (figure 2.5), there are
no free inputs. As a result, the Moore machine for this circuit (fig-
ure 2.7) looks very much like a structure. Also, we have the intuition

2.3, MOORE MACHINES AND CTL 33

Figure 2.7: Composition of Moore machines

34 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

that the behavior of the circuit cannot be altered by connecting it to
other circuits. Thus, it seems natural to define a correspondence be-
tween Moore machines with no free inputs and structures. (In fact,
due to the isomorphism between such Moore machines and structures,
we will sometimes identify them for notational convenience.) Then, we
will define the semantics of CTL for these Moore machines by using
the corresponding structure.

Definition 2.7 A Moore machine M is called closed if it has no free
inputs, i.e., if Ay = 0. A closing environment for M is a Moore ma-
chine M" with Ap N A%, =0 and A; C A;. Thus, M and M" can be
composed, and the result will be clused.

Definition 2.8 The structure M’ for the Moore machine M (denoted
struct(M)) is defined as follows:

. §' = S x labelings(A;). (Recall that labelings(A;) is the set of
all labeling functions over Aj.)

o

I' = I x labelings(Ay).

3. R'((s0, fo), (s1, f1)) iff R(so, fo,s1)-

4. A=A U Ao.

5. L'((s, f),a) = f(a) for a € A;. L'((s,f),a) = L(s,a) for a € Ao.

In the above definition, we actually assign a structure to an arbitrary
Moore machine, not just a closed one. The reason for this will become
clear later; for now, assume that the Moore machine M above is closed.
Now we define satisfaction i terms of struct(M). '

Definition 2.9 Let M be a closed Moore machine, and let p be a CTL
formula with Ap D comp(p). Then M | ¢ iff struct(M) = .

(Note that the fact that a Moore machine is closed does not mean
that it cannot be composed with other Moore machines. Given this,
there needs to be some argument that such compositions do not affect
the closed machine in any real way. For now, we just state that this is

2.3. MOGRE MACHINES AND CTL 35

indeed the case: given a closed machine M, a formula p, and a closing
environment M’, we have M = ¢ iff M || M’ = . The proof of this is
deferred.)

Let us now consider non-closed Moore machines. One possible way
to definc the semantics of CTL for such machines is to just assume that
the environment can give ar.y input at any point. With this assumption,
we can produce a structure for an arbitrary machine M. The idea will
be as follows: each state of M will be split into a number of structure
states, one for each possible input that the environment could give.
The transitions out of one of the structure states s are determined
by looking at the Moore machine transition relation and seeing which
transitions are enabled given the particular input represented by s. In
fact, the structure obtained in this way is exactly struct(M) as defined
above. Now we can again just take M = ¢ iff struct(M) E ¢. This is
the approach that has traditionally been used [13, 14].

Example 2.5 Consider the non-closed Moore machine of example 2.2.
This Moore machine, shown in figure 2.3, is represented by the structure
giver in figure 2.1. Each state of the Moore machine has been split into
two structure states, one for the case when @ = 0 and one for the case
when a = 1. a

With this definition of when a CTL formula is true for a Moore
machine, we have that the machine of figure 2.3 satisfies the formula

AG(r=1Ap=1Aa=0-EXEX(r=1Ap=0)).

Note, however, that when we compose this Mo.ore machine with the one
in figure 2.6 (obtaining the Moore machine :r. tfigure 2.7), the formula
ceases to hold. On the other hand, according to this definition, the
machine of figure 2.3 also satisfies

EF(e =0ANEX(a=0AEXa =0))
—EF(r=1Ap=1Aa=0AEXEX(r=1Ap=0)).

(“If it is possible for three a = 0 inputs to occur in a row, then it is also
possible to pass through the state rpa and to be in one of the states rpa
or rpa in two more steps.”) This formula in fact remains true no matter

36 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

what closing environment we use for the machine. In order to be able to
do compositional reasoning, we must have some way of distinguishing
between these two situations. That is, we need to be able to tell when a
formula is true of all possible closed systems that we could build using
a given non-closed machine. Motivated by this requirement, we now
give the definition of satisfaction of a formula that we will use from this
point on.

Definition 2.10 Let M be a Moore machine, and let p be a formula
with A; U Ao 2 comp(p). We say that M satisfies ¢ (M |) when
for every closing environment M’ for M, struct(M | M’) | ¢.

Obviously, this is not a definition that immediately suggests any
procedure for checking whether M = ¢. The problem of deciding,
for a particular class of formulas, whether or not a Moore machine
satisfies a formula in that class will be called the compositional model
checking problem for the class. In the remainder of this chapter, we first
show that there is probably no efficient algorithm for the compositional
model checking problem for full CTL. However, we will show that for
a subset of the logic called ACTL, the problem is efficiently decidable.
This result will serve as the basis for the remainder of the thesis: using
ACTL, we give methods for doing full assume-guarantee style reasoning
and for using abstraction to simplify the verification process.

Before proceeding, we must say a word about what we consider to
be an efficient algorithm. Consider a Moore machine M where A; is
a set of input components ranging over {0,1} and Ag is empty. Also.
suppose S = [= {sg} and that there is a transition from s¢ to so
on any input. The traditional model checking algorithm for CTL on
Moore machines has complexity Q(2!*/1) in this case, even for purely
propositional formulas. This is precisely because each state of M is
viewed as being represented by 21411 structure states. In fact, for a
purely propositional formula ¢, checking whether M }= ¢ is equivalent
to checking whether ¢ is a tautology. Given this observation, we cannot
expect to obtain an algorithm that runs in time subexponential in |.4].
Thus, we will consider an algorithm that is exponential in |A;| but
polynomial in |S|, |R], |¢l, etc., to be “efficient”.

2.4. COMPOSITIONAL VERIFICATION AND CTL 37

2.4 Compositional Verification and CTL

In this section, we consider the compositional model checking prob-
lem for full CTL: given a Moore machine and a CTL formula, decide
whether the formula is true of all closed systems containing the Moore
machine. We show that there is probably no eflicient algorithm to solve
it. More specifically, we prove that even if M is represented by its corre-
sponding structure (i.e., the input is already exponential in |A[{), then
the compositional model checking problem for CTL is still NP-hard.

The reduction will be from 3SAT [34]. Let f =coAci A+ A ey
be a 3SAT formula, and let the variables in f be zq, zy, ..., Zn_1.
We are going to construct a Moore machine M that will receive a
sequence of inputs, one per variable of f, denoting whether each variable
is true or false. Given such a sequence of inputs, the terminal reachable
states of M will indicate whether each conjunct in f is true or false for
those particular variable values and so tell whether f is satisfied. The
quantification over all closing environments is used to quantify over all
possible input sequences, i.e., all valuations of the z;.

Conceptually, the inputs to M will take on values from the set

{1'0» Loy -y Tn-1y " Tp-1 }

We encode these possible inputs using [log, 2n] boolean input state
components. The input sequence representing the valuation for the
x; will be of the form 2, &, ..., i,-1, ..., where ¢ is an arbitrary
initialization input, ¢; is either r; or —z;, and the inputs after ¢, are
arbitrary. Conceptually, the output labeling function for each state will
denote one of the values

{nothing, co, —co,...,Cmn-1, Cm_1}.

These are encoded with [log,(2m + 1)] boolean output state compo-
nents. For clarity, when writing inputs and outputs, we will use the
conceptual values above. Also, when labeling states in a figure, we use
no label to indicate nothing.

Let ¢, denote either £ or —x;, and let —e; be —z; if ¢; = z; and r;
if e; = —z;. For each conjunct cx = (e, V e, Ve;,) of f, we construct
a recognizer that will tell whether the conjunct is satisfied. Assume

18 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

without loss of generality that jo < j; < jz. The recognizer for this
conjunct is shown in figure 2.8. Obviously, given a sequence of inputs
as described above, this recognizer will reach the state labeled ¢ if
the conjunct evaluates to true and will reach the state labeled —c;
otherwise. Also, once it reaches either of these states, it remains there
regardless of ary further inputs.

otherwise otherwise otherwise .

Figure 2.8: Recognizer Moore machine for a conjunct

The Moore machine M will consist of a group of recognizers, one
per conjunct. These recognizers all share their initial state, i.e., M has
exactly one initial state. Consider an environment which supplies a
sequence of inputs of the form described earlier to M. In this environ-
ment, the state labeled —¢, is reachable iff the corresponding valuation
of the r, makes the conjunct ¢, false. Thus, the valuation represented
by the environment makes f false iff for some k, there exists a path
in the composition of M and the environment to a state labeled —c¢.
Based on this, it is tempting to suggest that f is satisfiable iff it is not
the case that every closed system containing M satisfies the formula

(EF =co) V (EF ~¢;) V -+ V (EF ~¢p_y).

This is not quite the case however, in that any arbitrary environment
may not behave as we would like. For example, it may never give an
input signaling the truth value of some particular z;, or it may give

2.4. COMPOSITIONAL VERIFICATION AND CTL 39

an input saying that z; is true and then later give an input saying
that it is false. One way to try to exclude this type of behavior would
be to add a kind of “syntax checker” to M, such as the one shown
in figure 2.9 (in the figure, “ow” denotes “otherwise”). However, this
leads to complications if the environment nondeterministically chooses
different variable values on different paths.

I,

Figure 2.9: Syntax checking Moore machine

Iustead of adding such a checker, we modify our CTL formula. Af-
ter one arbitrary input, the environment may either supply an ro or a
~ro, but it may not output anything else, nor do we want it to non-
deterministically choose different values on different paths. That is. it
must satisfy '

(AX z9) V (AX —zy).

In general, after j + | steps, it must supply a unique value for r;, and
heoce must satisfy

(AXH) v (AX?H —z)),

10 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

where AX’ p is an abbreviation for

J

AXAX .. AXp.

This leads us to the desired result (the proof is deferred).

Theorem 2.1 f is satisfiable iff it is not the case that every closed
system containing M satisfies the formula

n—1 m-—1
A (AX7*') v (AX?*! =z;)) - \/ EF .
j=0 k=0

To complete the argument that the compositional model checking
problem for CTL is NP-hard even when the Moore machine is given as a
structure, we need to show that the Moore machine constructed above
can be constructed in time polynomial in the size of f. Obviously it will
be enough to observe that the (structure for the) Moore machine has
size polynomial in the size of f. The Moore machine has m recognizers.
each of which has six (Moore machine) states. The state labeling for
each state uses O(log, m) bits. The input encoding is O(log, n) bits
long, where n is the number of variables appearing in f. Hence when
we expand the Moore machine into a structure, we get a factor of n
increase in size. Overall, the number of bits needed to represent the
states of the Moore machine is O(mnlog,m). The number of bits
needed to represent the transitions is at worst O(n(mn log, m)?).

Before moving on, we note that we can obtain an cfficient approz-
imation algorithm for the compositional model checking problem for
full CTL. Consider why the compositional model checking problem for
CTL is difficult. First, it is generally not possible to decompose a for-
mula into subformulas, check the subformulas, and combine the results.
For example, consider checking EX(a = 1) V EX(a = 0) on a Moore
machine where « is an input ranging over {0,1}. Obviously, the for-
mula as a whole will be true regardless of what the environment does.
However, EXa = 1| is certainly not true for all environments. nor is
EXa = 0. Thus, determining whether the two subformulas are true in
all environments does not help us solve the overall problem.

2.4. COMPOSITIONAL VERIFICATION AND ('TL 41

A related difficultly arises in situations such as the one shown in
figure 2.10. Consider trying to determine whether EXEX b = 1 is true
of all systems containing the Moore machine shown in the figure. In the
standard CTL model checking algorithm, we would use the truth value
for EXb = 1 at the two successors of the initial states to determine
whether EXEX b = 1 was true at the initial state. For this example,
there are environments that make EX b = 1 false at the left successor
and others that make the formula false at the right successor. However,
the overall formula is in fact true in all environments. This is because
no environment can distinguish between the two successors based on
their labeling. Hence, if the environment supplies the input @ = 1 to
the left successor, b = 1 becomes true in the next state. If it supplies
only a = 0, then it must also supply a = 0 to the right successor, and
this will again lead to a state where b is true. Thus we cannot just look
at immediate successors when evaluating temporal operators.

Figure 2.10: A nondeterministic Moore machine

Our approximation algorithm will be designed to avoid these prob-
lems. Given a formula and a Moore machine M, the algorithm will
indicate either:

12 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

1. the formula is true of all closed systems containing M; or
2. the formula is false of all closed systems containing M; or

3. the truth vaiue of the formula for all closed systems contain M is
unknown.

Our approximation algorithm will be efficient, but it will not be able
to resolve all difficult situations such as those discussed above.

The basic idea behind the algorithm will be to separate out the
branching in the environment (input nondeterminism) from the branch-
ing in the Moore machine itself (internal nondeterminism). When
checking a formula such as EX ¢ at a state, we will see whether for
all input choices, there exists an internal choice such that we reach a
state where ¢ must hold. The basic structure of the algorithm will then
be similar to standard CTL model checking methods. We proceed in a
bottom-up fashion, starting at the atomic subformulas and working our
way towards the top-level formula. Operators such as EF will be eval-
uated using fixed point techniques. The full approximation algorithm
and a proof of its correctness is deferred until the end of the chapter.

2.5 ACTL

In this section, we show that there is a subset of CTL, which we call
ACTL [30, 52, 60, 35], for which the compositional model checking
problem is efficiently decidable. Further, this subset is sufficiently ex-
pressive to cover almost all of the temporal formulas that are used as
specifications in practice. The basic idea behind ACTL is to eliminate
the ability to talk about the existence of a path, i.e., the E path quanti-
fier. Once the logic can only talk about behavior over all paths, we will
Just need to consider a single “maximal” closing environment in order
to solve the compositional model checking problem. Intuitively, com-
posing with any other closing environment will eliminate some paths,
and since our formulas only talk about behavior over all paths, such
pruning will not change a formula from true to false. Further, if the
composition of the given component with its maximal closing environ-
ment does not satisfy the specified formula, then the formula obviously

2.5. ACTL 13

cannot be true of all closed systems containing the component. We be-
gin by formally defining ACTL; in order to ensure that E does not arise
via duality, we require that formulas be in a type of negation-normal
form. Thus, negations can only be applied to atomic formulas.

Definition 2.11 The logic ACTL over a set of state components A is
the set of formulas given by the following inductive definition:

1. The constant true is an atomic formula.

2. For each state component a in A and element d of D,, a = d is
an atomic formula.

3. If ¢ 1s an atomic formula, then —¢ is a formula.
4. If p and ¥ are formulas, then ¢ A ¥ and ¢ V ¥ are formulas.

5. If o and ¥ are formulas, then AX ¢, A(p V) and A(p Uy) are

formulas.

We may sometimes write an ACTL property using E; in these cases,
pushing negations inwards using duality will resuit in a proper ACTL
formula.

ACTL is sufficient to express many interesting properties. In fact,
almost all CTL specifications that are used in practice are expressible
in ACTL. Intuitively, this is because we generally want to require that a
system must behave correctly, rather than that it may beliave correctly.
The most commonly used CTL properties that cannot be expressed in
ACTL are those describing weak progress requirements. As an exam-
ple. the formula AG EF restart = 1 that we mentioned earlier is not
expressible in ACTL.

We now show that the compositional model checking problem for
ACTL is efficiently decidable. To do this, we will prove that it is enough
to consider the composition of the component M with the following
environment when doing the model checking.

Definition 2.12 The mazimal closing environment for the Moore ma-

chine M, denoted E(M), is the Moore machine M’ defined as follows:

(5} CHAPTER 2. COMPOSITIONAL VERIFICATION. PART |

1. 8" = F, where F is the set of all labeling functions over 4,.

2. 0'=F.

3. A =0.

3. Ap = AL

5. R'(sg, f',s)) 1s identically true.

6. L'(f,a) = f(u)

Example 2.6 The maximal closing environment for the Moore ma-
chine of figure 2.3 is shown in figure 2.11. It has no inputs and <ne
output, a, corresponding to the inputs of the Moore machine in the
earlier figure. Composing the Moore machine of figure 2.3 with its
maximal environment gives the result shown in figure 2.12. a

(/ 9
O

Figure 2.11: The maximal closing environment for the Moore machine
of figure 2.3

The reader may think that the state diagram in figure 2.12 looks
familiar. In fact, it is the same as the one in figure 2.1, which happens
to be the structure for the Moore machine of figure 2.3, In gencral,
the composition of the Moore machine M together with E(M) gives a
Moore machine that is isomorphic to struct(M). Thus, when checking
whether struct(M || E(M)) I o, we are essentially just checking that
struct(M) |= . This means that doing the composition with the max-
imal closing environment does not really tnerease the size of the state
graph that we are working with. We now turn to the main result of
this section.

2.5. ACTL 45

Figure 2.12: The composition of the Moore maciiine of figure 2.3 with
its maximal closing environment

Theorem 2.2 Let M be an arbitrary Moore machine, and suppose
that ¢ is an ACTL formula with A;U Ap O comp(p). Then M k= o iff
struct(M || E(M)) E .

The formal proof of this is deferred until the end of the chapter;
here, we just try to give the intuition why it is true. The key idea is to
note that if M’ is a closing environment for M, then there is a natural
mapping from states of M || M’ to states of M || E(M). To see this,
consider a state s’ of M’. Since M’ is a closing environment for M,
the output labeling of s" must give values to all the state components
in A;. Hence. we can view s’ as giving rise to a labeling function
over A;. However, each such labeling function is a state of £(M), and
so for each &', we have a corresponding state sipy,, of E(M). Now a
state (s.s") of M| M’ will just be identified with (s, s};(5,y) in M E(M).

Example 2.7 Let M be the Moore machine of figure 2.3. Recall
that the composition of M with its maximal closing environment (fig-
ure 2.11) is given by figure 2.12. Now let M’ be the Moore machine of
ligure 2.6. M’ is a closing environment for M, and the composition of
M and M’ is shown in figure 2.7. For each state in M || M’, we can
obtain a corresponding state in M || E(M) by dropping the labeling for

16 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART 1

the state component ¢q. As an example, the state Fpag in M || M’ maps
to the state 7pa in M || E(M). .0

Further, the mapping above also has two nice properties:
1. initial states of M || M’ map to initial states of M || E(M); and

2. pairs of states, i.e., transitions, of M || M’ map to transitions
of M || E(M).

In essence, the Moore machine M || M’ can be embedded in the Moore
machine M || E(M). Now consider a formula of ACTL. The formula
describes properties of all paths from a state. If such a formula is false
at some state in M || M’, then we can find some path demonstrating
why it is false. This path is then mapped into a corresponding path
in M || E(M). By using an inductive argument, we can prove that this
path demonstrates that the corresponding state in M || E(M) does not
satisfy the property either. This argument shows that if we verify that
a formula is true for M || E(M), then we know that the formula holds
in all closed systems that contain M. Further, if the formula is false for
M || E(M), then obviously we have found a closed system containing M
for which the formula is false.

2.6 Summary

We have considered the issues involved in using the temporal logic
CTL to specify properties of systems of Moore machines. The desire to
do compositional reasoning led us to consider the compositional model
checking problem: given a Moore machine and a formula, is the formula
true in all closed systems that can be built using the Moore machine.
We showed that there is probably no efficient algorithm for solving
this problem in the case of general CTL formulas. However, we also
proved that the problem can be solved efficiently for the CTL subset
ACTL. ACTL will be used in the following chapters as the basis for
doing assume-guarantee style reasoning and for using abstraction. The
remainder of this chapter is devoted to filling in some of the formal
details and proofs that were deferred earlier.

2.7. TECHNICAL DETAILS 47

2.7 Technical Details

First, here is the formal definition of comp, the function that returns
the set of state components that appear in a formula.

Definition 2.13 The set comp(y) of state components of the for-
mula ¢ is defined as follows:

—

. comp(true) = 0.

(8]

. comp(a = d) = {a}.

3. comp(—y) = comp(p). comp(yp A P) = comp(yp) U comp().

4. comp(AX @) = comp(yp).
comp(A(p U ¢)) = comp(p) U comp()).
comp(A(p V ¥)) = comp(p) U comp().

Now let us go back to the definition of satisfaction of a formula
by a closed Moore machine (definition 2.9). We remarked there that
since closed Moore machines can still be composed with other Moore
machines, there needed to be an argument that such composition did
not really affect the closed Moore machine. This notion will be for-
malized using a notion of bisimulation equivalence [71] between Moore
machines. The basic idea will be to show that if we have a closed
Moore machine M, and we compose M with a closing environment M’,
then M and M || M’ will be equivalent. We will then appeal to the
well-known result that equivalent structures satisfy the same CTL for-
mulas [16]. There is one detail that we must take care of first however:
- M and M || M’ will not actually be directly comparable since M || M’
will contain extra outputs. Thus, we will need a way to hide these
outputs.

Definition 2.14 Let M be a Moore machine and A be a set of state
components. The result of restricting M to A (denoted M | A) is the
Moore machine M’ defined by:

1.5 =5.
2. I'=1.

43 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART 1

3. Aj=ANA.

4. Ap = Ao N A.

5. R'(so, f',s1) iff there exists f such that f' = f] A and R(so, f, 51)-
6. L' is defined by L'(s) = L(s) | A.

While the above definition makes it possible to hide inputs, in gen-
eral we will only be concerned with hiding output state components.
Hiding outputs can just be thought of as “erasing” part of the output
labeling on each state of the Moore machine. Now we give our defi-
nition of equivalence between Moore machines. This is essentially the
standard notion of strong bisimulation [71].

Definition 2.15 Let M and M’ be Moore machines with A; = A} and
Ap = Ap. = € § x 5 is a bisimulation relation iff for every pair of
states sp and s;, such that so = sp, the following holds:

1. L(se,a) = L'(sg,a) for all a € Ap.

2. For all labeling functions f over Ay, if R(sq, f, 31), there exists s}
such that R'(sg, f,s]) and s; = si.

3. For all labeling functions f over Ay, if R'(sg, f,s}), there exists s,
such that R(so, f,s1) and s, = s/.

Two states s and s’ are bistimulation equivalent (M,s = M’,s') when-
ever there exists a bisimulation relation = such that s = s'. M and M’
are bisimulation equivalent (M = M') whenever for every state s € [,
there exists s’ € I’ such that M,s = M',s', and conversely, for every
state s € [’, there exists s € [such that M,s = M’, &',

Note that if the Moore machines A/ and M’ in the above definition
are closed, then bisimulation between the Moore machines corresponds
exactly to bisimulation between their structures (where structure bisim-
wlation is defined in the standard way). Next, we turn to the proof that
composing a closed Moore machine with another closing environment
does not affect the first machine.

2.7. TECHNICAL DETAILS 49

Proposition 2.1 Let M be a closed Moore machine, and M’ be a
closing environment for M. Then M = (M || M) | Ao.

Proof Define M” = M || M’ and M" = M" | Ap. Let = be defined by
s = (s,s') for every s’ in S’; we show that = is a bisimulation relation.
If s¢ = (s0,5p), then:

L. L"((50,5)) = (L(30) U L'(s5)} | Ao = L(s0)

2. Suppose R(so, f,s1); note that dom(f) = 0. Since the tran-
sition relation for any Moore machine is total, there exists s}
such that R'(sg, L(so) | A,s}). Now by the definition of Moore
machine composition, R”((so,sp), f,(s1,871)). This implies that
(s0,sp) and (s1,s]) are also related via R”. By our definition
of =, s; = (s1,)).

3. Suppose R"((so,Sg), f,(51,5})); again note that dom(f) = 0.
Then R"((s0,35), f,(s1,51)). Now by the definition of Moore ma-
chine composition, R(se, f,s1), and we have s, = (s,, s}).

Moore machines must have non-empty initial state sets, so there must
be some s’ € I'. Now if s € I, then (s,s’) € I" and (s,5’) € I'". Also,
every (s,s’) € I" is related by ~ to s € I. Thus M = M™. o

Because of the isomorphism between closed Moore machines and
structures and the relation between closed Moore machine bisimulation
and structure bisimulation, we find that struct(M) and struct(M ||
M') must be bisimilar. This implies that they satisfy the same CTL
formulas, which is the desired result.

Next, we give the proof of theorem 2.1 (NP-hardness of the compo-
sitional model checking problem for full CTL). We will not repeat the
details of the construction here (the reader may wish to look back over
section 2.4).

Proof Assume that every closed system containing M satisfies the for-
amla. Then in particular, the composition of M with an environment
of the form shown in figure 2.13 must satisfy the formula. Such an en-
vironment represents a particular valuation of the variables in f. The
compositiou of M and this environment obviously satisfies the left side

50 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART I

of the implication, so V2 y! EF —c; must also be true. This implies that
some conjunct in f is false for the valuation under consideration. Since
this valuation was chosen arbitrarily, we conclude that f is unsatisfi-
able.

Figure 2.13: Environment representing a valuation

Assume that it is not the case that every closed system containing
M satisfies the formula. Let M’ be a closing environment for M for
which the formula is false. Consider a run of M ||M’. Let ¢, 2q, ..., tn
be the first n + 1 inputs supplied to M by M’. For the formula to be

false,
n-1

A (AX* z) v (AXIH -z;))

1=0
must be true. Hence :; must be either z; or —z;. Consider applying
this sequence of inputs to the recognizer for ci. Since

m~1
V EF “Ck

k=0

must be false, this sequence of inputs must lead to the state of the
recognizer labeled with ¢, i.e., ¢, must be true for the valuation repre-
sented by this sequence of inputs. But since this is true for an arbitrary
Ck, this valuation must in fact be a satisfying valuation for f. o

We now give the details of the approximation algorithm for solving
the compositional model checking problem for CTL. Given a Moore
machine M, a state s of M, and a CTL formula ¢, let M, s = ¢ denote
that: for every closed system containing M, every composite state in
which M is at s satisfies . This is analogous to what it means for
M to satisly o, but we only consider a specific state of M. Let [be
a labeling function over A;; M, s, f E ¢ will be similar to M,s | .,
except that we only consider composite states where M is at s and

2.7. TECHNICAL DETAILS 51

the input supplied to M is f. For example, suppose M is the Moore
machine of figure 2.10 and let s be the state just to the left of and
below the initial state. Then M,s, f = EXb =1 when f(a) = 1. The
algorithm will record, for each subformula ¢ and each state s of M, a
set of f such that M,s, f = ¢ and a set of f such that M,s, f | —e.
(Since we are only computing an approximation, the sets might not
include all f satisfying these conditions.)

For atomic formulas these sets are computed in the obvious way.
Similarly, the sets a formula like ¢ Ay can be computed in a straightfor-
ward manner from the sets for ¢ and ¥. The only interesting question is
how to compute the sets for EX ¢ from the sets for ¢. Consider apply-
ing the input f at state s. Suppose that given this input, s has succes-
SOIS Sq, - - ., $n-1. Also suppose that for one of the s;, M,s,, f' = ¢ for
all possible f'. Then clearly M, s, f F EX . More generally, suppose
that some of the s;, say so and s;, have the same output labeling. In this
case, the environment cannot distinguish between sp and s, and hence
must supply the same inputs to both. Thus we have M, s, f = EX ¢ if
for every f', either M, so, f' |E @ or M, sy, f' = . We take the union
of the sets of valuations for which ¢ is known to be true at s and s,
and see whether this is the set of all input valuations. In summary, our
strategy for deciding whether M, s, f F EX ¢ is to look at the succes-
sors of s under f, group them into classes according to their output
labeling, and take the union of the sets for which ¢ 1s true within each
class. If for any class, the result is the set of all input valuations, then
we know M, s, f = ¢. (Note we are actually doing some work to try to
resolve situations involving nondeterministic transitions. However, we
are bounding the amount of “lookahead” that we are willing to do to
just one level of successors.) Now consider - EX . This formula must
be true at s if for every successor s;, ¢ is known to be false at s; for
every input valuation, i.e., M, s;, f' |E —~p for all s; and f'.

We will let S, , denote the set of input valuations f for which we
know that M,s, f | ¢. Also, T, will denote the set of input valua-
tions f for which we know M.s, f = —~p. In figures 2.14 through 2.16,
we give the algorithm for computing S, and T, , for all states s
and subformulas p. We have omitted the description of the proce-
dure computeegsets since it is similar to computleeusets except using
the fixed point characterization of EG. Also, all the assignments of the

32

CHAPTER 2. COMPOSITIONAL VERIFICATION, PART 1

form S,, := ... and T, := ... include an implicit loop over all states s
of M.

procedure computesets(p)

if o =(a =d)
Sue = {11 (L(s)U f)(a) = d}
T,y :={f1(L(s)U f)(a) #d}

else if ¢ = (~9)
computesets()
S,M =iy
TSW = Osy

else if o = (Yo A)
computesets(1o)
computesets(y;)
S,M = S,‘% N Sa.du
Too := T U T,

else if p = (EX 9)
computeezsets(y)

else if ¢ = (E(0 U 1))
computecusets(yg, V)

else if p = (EG)
computeegsets(i)

endif

Figure 2.14: Approximation algorithm for the compositional model
checking problem for CTL

Pr

To show correctness, we have the following.

oposition 2.2 For all subformulas ¢ and all states s and input val-

uations f, we have:

Laf f €5, .., then M,s, f E p; and

2.if feT,,, then M,s, f E —.

2.7

TECHNICAL DETAILS

function ez(s,y)

result := 0
for each input valuation f
for each class C of successors of s under f
with identical output labelings
if Uyec Sy, includes all input labeling functions
result := result U {f}
endif
endfor
endfor
return result

function az(s,)

result := {)

for each input valuation f
if for every successor s’ of 3 under f,
Ty, includes all input labeling functions

result := result U {f}

endif

endfor

return result

procedure computeezsets(y)

computesets(p)
S, EXy 1= €z(s,)
Ts.EX';: = a:t(s, ¥)

Figure 2.15: Procedure for computing S and T for EX

33

54 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART |

procedure computeeusets(p,)

computesets(yp)
computesets(y)
S:,Y =10
repeat
Sey = S50 U(SspNezx(s,Y))
until fixed point
Ss.E(valz) = S:.Y
set T,y to the set of all input valuations
repeat
Ts.Y =T,y N (Ts.w U az(s, Y))
until fixed point
Ts.E(wa) = Ts.Y

Figure 2.16: Procedure for computing S and T for E(¢ U)

Proof By induction on the structure of the subformula. For atomic
subformulas, the result is trivial, and for subformulas whose top oper-
ator is a logical connective, the result follows in a straightforward way
from the induction hypothesis.

Consider a subformula EX ¢; suppose f € S,gx,. Then there
exists a group So, ..., Sn—1 Of successors of s under f such that L(s;) =
L(s;) for all ¢ and j and such that {J; 5, , is the universal set of input
labeling functions. Consider any closing environment that presents f
to M at the state s. M will be able to make transitions to all of
the s;, and if the environment presents an input f’ to one s;, it must
present that same input to all. But for any such f’, there exists an @
such that f' € S, ,. By the induction hypothesis, M,s;, [| ¢, so
in the environment that we are considering, ¢ will be satisfied starting .
at s;. Hence, given the input f, s will have a successor satisfying .
ie., M,s, f E EX .

Suppose now that f € T, gx,. For every successor s’ of s under f,
Ty, is the set of all input valnations. By the induction hypothesis.
M,s', [' E —¢ for every f'. Thus, given the input f, p must be false
regardless of the closing environment. Hence M, s, f E ~EX .

2.7. TECHNICAL DETAILS 55

Next, we consider subformulas of the form E(p U ¢). Assume that
f € S5 E(,Uy), and fix a closing environment for M that supplies f at s.
Since f € S, E(,Uy), there is some iterate of S, y, say S, v, containing
f. Assume without loss of generality that 1 is chosen to be as small
as possible. We prove by induction on i that M,s, f = E(p Uy). If
t = 1, then we must have f € S, ,. By the outer induction hypothesis,
M,s,f E v, and hence M,s, f | E(¢ Uy). For : > 1, we have
f €S,, (so M,s,f E ¢). Further, given f, s must have a class of
SUCCESSOIS S, - . ., Sp—1 such that all s; have the same labeling and for
each f', f' € S, yi-1 for some j. By the inner induction hypothesis,
M,s;, f' E E(¢ U y). This implies M,s, f E EXE{p Uy). As a
result, M, s, f E E(p U ¢).

Suppose f € T, g, Uy), and again fix a closing environment that
supplies f at s. Consider the iterates T,y for : > 0. We prove via
induction on @ that if f € T,y,; then there is no path starting at s
and beginning with the input f satisfying ¢ U ¥ and such that a state
satisfying ¥ is reached within : — | steps. For: = 1, we have f € T, ,,
and so by the outer induction hypothesis, M,s, f i -y. Fori > 1,
assume we have a path satisfying ¢ U 3. We know f € T, so again
¥ cannot be true immediately. Thus, since the path satisfies o U 1, it
must satisfy ¢ at s. This implies f ¢ T,,,, so for every successor of s
under f, and for the successor s’ on the path in particular, Ty y,; is
the universal set of input valuations. Now by the induction hypothesis,
there is no path starting at s’ satisfying ¢ U ¥ and such that a state
satisfying 1 is reached within ¢ — 2 steps. Hence, 7 is not reached in
1 — | steps on the original path. Now suppose that there is in fact a
path satisfying ¢ U ¢ from s and beginning with the input f. Since ¥
must become true at some point on this path, f must not be in T,y
for sufficiently large i. But this implies f ¢ T, g(,uy), a contraction.
Hence there is no such path, and so M, s, f E -~ E(p U).

The proof for subformulas of the form EG ¢ is similar in spirit to
the above and is omitted. a

Our final proof is of theorem 2.2 (that it is enough to check ACTL
formulas just using the maximal closing environment.)

Proof Let M’ be a closing environment for M. Then we know that
Ap 2 A;. This implies that for state s’ of M, we can derive a unique

56 CHAPTER 2. COMPOSITIONAL VERIFICATION, PART I

labeling function over . - by L'(s’)| A;. Now each such labeling function
is a state of E(M), so ti. map ¢ defined by ¢(s') = L'(s') | A; maps
states of M’ to states of M. We can extend this to a map from states
of M || M’ to states of M || E(M) by having o((s,s")) = (s, L'(s") | Ay).

Now:

1. If (s,s') is an initial state of M || M’, then s € I, and so ¢((s,s’))
is an initial state of M || E(M).

2. If (so, s5) can make a transition to (s;,s}) in M || M’ (remember
there are no free inputs), then R(sq, L'(sy) | Ay, s1). This implies
that ¢((so, s5)) can make a transition to ¢((sy,s})) in M || E(M).
Hence, every path in M || M’ has a corresponding path in M ||
E(M).

Since Moore machines with no free inputs are isomorphic to their cor-
responding structures, we will ignore the distinction for the remainder
of this proof.

We now prove by induction on the structure of ACTL formulas that

if M || E(M),8((s,s')) = ¢, then M || M',(s,5') |= ¢
1. For true, we trivially have ¢((s,s’)) = true and (s, s') | true.

2. Consider the atomic formula a = d. Assume a € Ag; then
é((s,8')) = (s,L'(s") | Ap), 50 8((s,5")) b= (a = d) iff L(s,a) =d.
However, (s,s') = (a = d) iff L(s,a) = d as well. If « € A;, then
#((s,8) E (a = d) iff (L'(s") | A5)(a) = diff L'(s',a) = diff
(5,5) = (a = d).

3. For negations of atomic formulas, just note that in the above two
cases, we showed iff’s rather than simple implication.

4. For conjunctions and disjunctious, the result follows immediately
from the induction hypothesis.

5. Consider a formula of the formula A(p U). Assume o((s,s"))
satisfies this formula. Let (s, sp)(s1,8)) ... be a path in M || .M’
from (s,s') = (S0,8p). Assume that this path does not satisfy
¢ U 4. Then there exists j such that (s;,s}) does not satisfy ¢,

2.7. TECHNICAL DETAILS 57

and for all : < j, (s;, 3}) does not satisfy y. By the (contrapositive
of the) induction hypothesis, ¢((s;,s})) ¥ ¢ and ¢((s:i,s})) ¥ ¢
for all : < 5. However, &((3o,s5))o((s1,5}))-.. is a path in M ||
E(M). This path does not satisly ¢ U ¥, and so ¢((se,Ssp)) =
#((s,s')) does not satisfy A(p U 9), a contradiction. Thus the
path (so,s5)(s1,1) ... must in fact satisfy ¢ U 1. However, this
path was chosen arbitrarily, and so (s,s') = A(¢Uvy). The proof
for the other temporal operators is similar.

Now we have shown that ¢((s,s’)) E ¢ implies that (s,s’) E .
If M || M }£ @, then there is an initial state (s,s’) of M || M’ such
that (s,s’) £ ¢. By the above, ¢((s,s’)) & ¢. But ¢((s,s’)) is also an
initial state, and so M || E(M) £ p. Taking the contrapositive gives
that M || E(M) = ¢ implies M || M’ |= ¢. Since M’ was an arbitrary
closing environment, we conclude that if M || E(M) = ¢, then M = ¢.
Finally, if M {| E(M) [£ o, then there is a closed system containing M
that does not satisfy p, and so M £ . Q

33

CHAPTER 2. COMPOSITIONAL VERIFICATION, PART I

Chapter 3

Compositional Verification,
Part 11

In the previous chapter, we considered the problem of determining
whether a temporal logic formula ¢ is true of all closed systems that
can be built using a component M. In practice however, we need more

powerful capabilities:

I. We need to be able to do assume-guarantee style reasoning. Com-
ponents are generally designed with some assumptions about how
their environment will behave. Thus, we want to check that: for
all closiug environments, either the environment violates some
assumption, or the composition of M with the environment is

guaranteed to satisfy .

(S

achieved.

Consider, for example, a pair of components Af and M’ that work
together to provide a service to a larger environment. The environment
passes requests to M, and M enqueues them. M’ removes requests
from: the quene, processes them, and sends acknowledgments back to

29

We need methods of doing hzerarchical verification. In hierar-
chical verification, vhe specifications that we check become im-
plementations at the next higher level of abstraction. When our
specifications are given as formulas and our components are given
as state transition systems, it is not obvious how this can be

60 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

the environment. Suppose that we wish to verify that every request
that the environment makes is eventually acknowledged. We may try
to deduce this by verifying that:

1. every request that M receives is eventually enqueued; and

2. every request that is put on the queue is eventually processed and
acknowledged by M’.

The first property above is essentially a local property of M, while the
second is a local property of M’. Thus, we might try to check the prop-
erties using just M and just M’, respectively. However, if M and M’
have been designed with some assumptions about the protocol used to
access the queue, then we may find that the “local” properties really
depend on these assumptions. When doing the verification, we must
take these assumptions into account. (Of course, we must also dis-
charge the assumptions by showing that M and M’ follow the intended
protocol.) Suppose that we do manage to verify that every request
made by the environment is eventually acknowledged, and that we now
want to prove a global progress property about the whole system. This
progress property may depend on the fact that M and M’ eventually
service requests. However, it probably does not depend on the details
of how this is accomplished. Thus, instead of using M and M’ when
doing the verification, we would like to use the first property that we
checked as an alternative “implementation” to M || M".

In this chapter, we show how to do assume-guarantee style reasoning
and hierarchical verification using ACTL. This is achieved by proving
a correspondence between satisfaction of ACTL formulas and a type of
simulation relation between structures. We also illustrate these ideas
by verifying the controller for a simple stack-based CPU.

3.1 Assume-Guarantee Reasoning

The assume-guarantee style of verification was first advocated in the
context of temporal logic by Pnueli [77]. In Pnueli’s system, we work
with triples of the form (p)M (1p). The most common reading of such

3.1. ASSUME-GUARANTEE REASONING 61

a triple is “if the environment of M satisfies ¢, then M in this environ-
ment satisfies .” ‘A typical chain of reasoning would be as follows:

()M {(p)
{(p)M'(¥)
(OM || M'(9).

Here, we are asserting that if:
1. M satisfies p; and
2. if the environment of M’ satisfies ¢, then M’ satisfies ¢

then the composition of M and M’ will satisfy ¢. The advantage of
doing the verification in this manner is that we never have to exam-
ine the composite state space of M || M’. Instead, we check ¢ using
just M, and then check ¥ using only M’ and the (hopefully simple)
assumption . The disadvantage is that the user must determine an
appropriate . As we shall demonstrate later however, knowledge of
how the system should behave plus feedback from an automatic verifier
makes this feasible in practice.

More generally, we may use multiple levels of assumptions and guar-
antees when doing a verification. That is, once we have proved a guar-
antee, we may use that guarantee as an assumption in later stages.
Because of this, a somewhat more precise reading of ()M (v’) would
be “if the system satisfies ¢ and contains M, then the system also sat-
isfies ¥.” This is because ¢ may in fact be something that is derived
based on earlier assumptions about M, and may reflect these assamp-
tions. Also, ¢» may describe the combination of M and its environment,
instead of just M. Of course, in order to avoid erroneous conclusions,
all chains of deduction must be well-founded, i.e., the base assump-
tions must themselves be proved without any assumptions. There is
a natural temptation to argue that (@) M (y) and () M'(p) should be
sufficient to conclude ()M || M'{p) and ()M || M’(x), but such circular

reasoning is generally not sound.

Example 3.1 Consider the Moore machine for the circuit of figure 2.2.
For convenience, the Moore machine is reproduced in figure 3.1; we will
call it M. Assume that we wish to prove that the composition of M

62 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

)

-

Figure 3.2: Moore machine for the circuit of figure 2.4

3.2. FRAMEWORK 63

with the Moore machine M’ of figure 3.2 (representing the circuit of
figure 2.4) satisfies the specification AG(p = 0V ¢ = 0). We can see
that this should be true since:

1. M only sets p = 1 at the same instant that it first sets r = 1; and

2. M’ sets ¢ = 0 when it observes r = 0, and does not set ¢ = 1
until one step after it observes r = 1.

So, when r first changes from 0 to 1, p does so simultaneously. At that
point, ¢ is still 0, since the change in r has not been observed yet. One
step later, p changes back to 0, while q observes the change in r and
transitions to 1.

We can verify the specification using assume-guarantee style rea-
soning as follows. First, we express the above assumption about M’
AG(r = 0 - AXq = 0). Next, we check that M’ in fact satisfies
this assumption. Finally we use this assumption to show that M sat-
isfies the desired specification, and conclude that M || M’ satisfies the
specification.

(M'(AG(r =0 - AX ¢ =0))
(AG(r=0—- AXq¢=0)M(AG(p=0Vq=0))
(M || M'{AG(p=10V q=10))

In the next section, we will consider how we actually go about estab-
lishing the truth of a triple (p) M (¥). O

3.2 Framework

In this section, we describe the basic framework for supporting assume-
guarantee style reasoning. (We presented this framework in 1991 [52]).
To provide a unified basis for doing assume-guarantee style reasoning
and compositional verification, we are going to introduce a notion of
simulation between state transition systems. Intuitively, the simula-
tion relation < will capture the notion of what it means for one such
system to include “nriore behaviors” than another. This notion is in
fact implicit in the section on ACTL in the previous chapter. There
we showed that checking M |= ¢, where M is a Moore machine, could

64 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

be done by composing M with its maximal environment. In a sense,
the maximal environment, which can provide any input at any point,
has more behaviors than any ccher environment. Put another way, the
maximal environment can simulate any other environment; our proof
of theorem 2.2 was based on this idea.

The relation < will be a preorder, i.e., a reflexive and transitive
relation. We could in fact view simulation as the basic relationship
between an implementation and a specification. Because of the tran-
sitivity of <X, we would get hierarchical verification essentially for free.
For example, if M <X M’ (“M’ can simulate M”), and if we want
to know whether M < M", then it would be enough to check that
M’ < M"”. Here, M' would represent a specification of M that is used
to prove a higher level specification M”. The simulation relation will
also interact with composition in a nice way: if M < M’, then we will
have M || M" < M’ || M". This type of property allows us to replace
an implementation by its specification in a composition. It also gives
us the analog of theorem 2.2; if we want to check M || M’ <X M", where
M" is conceptually a local property of M, then we can use a maximal
environment E(M) for M. That is, we will have M’ < E(M}, and so
M||M' <X M| E(M). Then by checking M || E(M) < M", we can use
transitivity to conclude M || M’ < M".

Previously, we had one notion of satisfaction of a temporal logic
specification (|=). Above, we have suggested a notion of satisfaction
of an automata specification (<). We would like to have some cor-
respondence between these two notions. This is done via a tableau
construction that maps a formula ¢ to an associated state transition
system 7 () which is called the tableau of the formula. We will prove
that satisfaction of a formula corresponds exactly to being simulated
by the tableau for the formula. Thus, < and | will really turn out
to be compatible notions. Further, the tableau construction makes it
clear how to do hierarchical reasoning with specifications that are given
as formulas. We simply use the standard model checking algorithm at
o' level, then construct tableaus for the specification formulas and
usc them as implementations at the next higher level. The tableau
construction can also be used for doing things like checking tmplication
between temporal formulas. Viewed another way, the correspondence
between state transition systems and formulas allows us to mix and

3.3. STRUCTURES 65

match, using either formulas or automata as either implementations or
specifications, whichever is most convenient.

Finally, with the above framework, it is easy to do assume-guarantee
style reasoning. The key observation is that an assumption (specified,
e.g., as a formula) represents the maximal environment that satisfies
that assumption. Consider the following assume-guarantee proof:

(M (p)
()M (%)
(OM || M'(3).

We interpret ()M (p) as saying that all the behaviors of M can be
simulated by T (y), i.e., M < T(p). Because of the correspondence
between < and f=, this can be checked by verifying M [¢. Eventually,
we want to conclude that M || M’ X T (). To check (p)M' (1)), we use
T (p) as the maximal environment satisfying ¢, i.e., we verify 7 (¢) ||
M’ k= . This is equivalent to saying T(p) || M’ < T(¥). Since
M < T(y), we can compose both sides with M’ to obtain M || M’ <
T(p) || M'. Then by transitivity, M || M' < T ().

As a final note, we will actually be working with structures rather
than Moore machines. This is mainly because formulas do not have
notions of inputs and outpuits, so the tableau construction will most
naturally produce structures. In addition, structures can serve as a
kind of “intermediate language” for representing other, more complex
types of models, such as Mealy machines [69).

3.3 Structures

In this section, we are concerned with two things. First, we are going
to extend the definition of structure to include a kind of infinitary
acceptance condition. Such an acceptance condition is used to rule out
certain infinite paths through the structure. This is uccessary in order
to be able to define tableaus for all of the formulas in ACTL, and also
to be able to make accurate models of real components. Second, since
we are going to be working with structures, we need to define a notion
of composition. When the structures represent Moore machines, the
definition will correspond to Moore machine composition:

66 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

To see why the current notion of structure is inadequate for repre-
senting tableaus for all ACTL formulas, we look at a specific example.

Example 3.2 Suppose that a is a state component ranging over {0, 1},
and consider the formula AFa = 1. Intuitively, the tableau is going
to represent all those behaviors that are consistent with the formula.
Thus, a first guess at the tableau might be the structure shown in fig-
ure 3.3. The idea is that starting from one of the initial states, we

Figure 3.3: Proposed tableau for AFa =1

should eventually reach the initial state with a = 1. At that point,
we know that the requirement that a eventually become 1 has been
fulfilled. The transitions from then on are completely unconstrained.
The problem of course is that there is nothing to guarantee that the
initial state where a = 1 is eventually reached. In particular, the struc-
ture of figure 3.3 allows the behavior where a remains 0 forever. Thus,
this structure would be able to simulate a structure with one (initial)
state sy where L(sg,a) = 0 and the only transition is from sy to sg.
Since the latter structure obviously should not satisfy AFa = 1, we
cannot use the structure of figure 3.3 as the tableau for AFa =1. O

In order to avoid this problem, we add another element £ to struc-
tures. /7 will represent an infinitary acceptance condition, as used in
automata on infinite strings. There are a number of different types of
acceptance conditions. One that we will sometimes use for explanatory

3.3. STRUCTURES : 67

purposes is Buchi acceptance [20]. In the case of Bichi acceptance, F
is a set of states. A path within the structure will be considered legal
if there is some state in F' that occurs an infinite number of times on
the path.

Example 3.3 Consider our previous attempt to construct a tableau
for AF a = 1. Suppose that we let F be the set consisting of the two
non-initial states of the structure of figure 3.3. Now the execution in
which we continually loop in the initial state where a = 0 is not legal,
because it does not visit any of the states in F an infinite number of
times. (In fact, it never visits any of the states in F at all.) o

Biichi acceptance is sufficient to define tableaus for all ACTL formu-
las. We will also use infinitary acceptance conditions in making models
of components. This is done for two reasons:

1. When hiding internal details of components or modeling classes of
components, we use acceptance conditions to capture the notion
of “arbitrary but finite” delays.

2. Some components are nondeterministic, but have probabilistic
guarantees of fairness.

Example 3.4 We consider the example of a countdown timer. A
countdown timer has an input r (for “reset”) and an output e (“ex-
pired”). When r becomes 1, an internal counter is reset to some fixed
starting value; also, the e output is set to 0. After r becomes 0, the
internal counter starts to decrement, and when the counter reaches 0,
it halts and e becomes 1. Then e remains at 1 until the next reset. Fig-
ure 3.4 shows a Moore machine for a countdown timer with a countdown
value of 3. Suppose that we are verifying a system containing such a
timer, and that the property we are checking does not depend on the
exact number of steps that the timer takes to reach 0. In this case, we
can eliminate some of the internal state of the timer model in order to
try to simplify the verification. We will use abstract model of the timer
shown iu figure 3.5. Now we want to ensure that if » becomes 0 and
remains 0, then eventually e must change to 1. This may be done by
adding the acceptance condition defined by GF(r =0 — e = 1). Here,

68 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

Figure 3.4: Model of a specific countdown timer

GF is a temporal operator indicating “infinitely often”. The intention
is that we expand out the Moore machine shown in the figure into its
corresponding structure, and those states for which r = 1 or e = 1
become the elements of F. Using the abstract model has another ben-
efit aside from simplifying the verification. In particular, if we were
to change the design by substituting a different countdown timer, we
would not have to re-verify those properties that we checked using the
abstract model. a

Figure 3.5: Abstract model of a countdown timer

Example 3.5 Suppose that we are modeling an arbiter. An arbiter
is a device that receives requests from a number of agents and grants
them mutually exclusive access to a shared resource. In addition to

3.3. STRUCTURES 69

making sure that the arbiter only grants the resource to one agent at
a time, we may want to say that the arbiter is fair, i.e., it should not
ignore a request from any agent indefinitely. Suppose that the arbiter
is in a state where deciding = | when it is about to grant the resource
to an agent. Also, assume that agent : makes its request by setting
the input 7, to | and is granted the resource when the arbiter sets the
output a; to 1. When the agent finishes using the resource, it sets r,
to 0, after which the arbiter sets a; to 0 and goes back to the deciding
state. Qur first temptation is to say that r;, — a; should be true
infinitely often (for each i). The idea would be that when r; is | and q,
is 0, the arbiter is ignoring the agent, and it should not be allowed to
do so forever. Suppose, however, that agent 0 makes a request and is
granted the resource, and then never releases it. Now if agent 1 makes
a request, obviously it cannot be allowed to have the resource until
agent 0 releases it. Further, there is no way to compel agent 0 to do so.
Thus, the execution where agent 0 hogs the resource should be legal,
but it is disallowed by the constraint that r; — «, be true infinitely
often. In short, by trying to state that the arbiter is fair to agent 1, we
have restricted the legal input sequences for agent 0. This is obviously
not acceptable in an accurate model of the arbiter. The real constraint
that we want to specify is “if infinitely often the arbiter has a chance to
make a decision and agent 7 is requesting the resource, then infinitely
often agent i should be granted the resource”. This should be true for
every i
/\(GF(deciding A1) — GF q;).
t
This type of constraint cannot be captured using simple Buchi accep-
tance conditions. That is, Biichi acceptance conditions are generally
not powerful enough to be able to make accurate models when doing
compositional reasoning. Thus, we will actually use a stronger form of
acceptance condition called Streett acceptance [87]. Streett acceptance
can express constraints like the one above. F will be a set of pairs
(P.Q) of sets of states. A path is legal if for every (P, @), either the
path stays inside P after some point, or infinitely often 1t visits a state
in (. That is
N\ (FG PV GFQ).
(P.Q)

70 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

FG is a temporal operator expressing “almost always”™: it is the dual
of GF. (In the context of w-regular language theory, the two types
of acceptance conditions are equivalent, provided the automata are al-
lowed to be nondeterministic. However, if we try to change our arbiter
example to use Biichi acceptance by adding nondeterminism, we have
to alter the branching structure. Since we are working in a branching-
time framework, this is not acceptable.) =

We now give the extended definition of a structure that includes
an infinitary acceptance condition. Previous constructions involving
structures will be extended in the obvious way. For example, when
constructing the structure for a Moore machine, we construct S, [,
etc., as before and take F = 0.

Definition 3.1 A structure M = (S,I,R, A, L, F) is a tuple of the
following form:

1. 5,1, R, A, and L are as in definition 2.2.
2. F is a set of pairs of subsets of S.

We also add the requirement that a sequence of states which is to be
considered a path must fulfill the acceptance condition. This extends
to the semantics of CTL and ACTL: the A and E quantifiers will range
only over such sequences.

Definition 3.2 Assume M is a structure, and let T = sps;5,... be a
sequence of states of M. We define inf(7) to be those s, such that s,
appears infinitely often in 7. We say that 7 is a path in M starting
at sg when:

1. for all z, K(si, si+1); and

2. for every (P,Q) € F, either inf(x) C Porinf(r)NQ # 0.

We now turn to the definition of composition of structures. As men-
tioned before. we want this definition to correspond to Moore machine
composition in the case that the structures represent Moore machines.
That is, we want the following property to hold:

3.3. STRUCTURES 71

Proposition 3.1 Let M and M’ be Moore machines that can be com-
posed. Then struct(M || M’} is isomorphic to struct(M) || struct(M’).

With this in mind, we consider a specific example to motivate the
definition.

Example 3.6 Recall the request-acknowledge circuits that we used as
examples in chapter 2. The structures for the Moore machines rep-
resenting the circuits of figures 2.2 and 2.4 are reproduced in figures
3.6 and 3.7. We call these structures M and M’, respectively. The

()
o

o

Figure 3.6: Structure for the Moore machine shown in figure 3.1

(2)

structure representing the composite Moore machine is shown in fig-
ure 3.8 (this is the reachable portion of the state space only). Consider
the state rpaq in the composition. When we project this down onto
the sets of state components A = {r,p,a} and A’ = {r,a, q}, we obtain
labelings rpa and agr. Thus, it seems natural to view the state rpaq as
being represented by a pair of states, rpa in M and aqr in M’. Since
Moore machine composition is synchronous, composition of structures
should be as well. i.e., in a step of the composition, both parts should
make transitions. The suceessors of rpa are rpa and rpa, and the suc-
cessors of aqr are aqr and aqr. If we look at pairs of these successors,
only rpa and aqr have “compatible” labelings. Now the only successor

[

CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 1l

Figure 3.7: Structure for the Moore machine shown in figure 2.6

-
f'ﬁ(%# rpaq

Figure 3.5: Structure representing the composite Moore machine

3.3. STRUCTURES 73

of rpaqg in the composition is rpag, which in fact does project down to
this pair. What abcut the other pairs though? If we turn back to our
physical model of circuits, we see that a pair such as rpa and aqr repre-
sents a situation in which one part of the circuit sees the logic value 0 on
the wire @, and the other sees the logic value 1 on the same wire. Since
this violates our physical intuition, we shall simply eliminate pairs of
states with incompatible labelings from the composition. As for the
initial states of the composition, we note that r¥pag, which is an initial
state, projects to initial states in both M and M’. On the other hand,
a state such as rpaq, which projects to an initial state in M’ but not
in M, should not be initial. In summary, to obtain the relationship of
proposition 3.1, we should view states of the composition as pairs of
component states with compatible labelings. Transitions should cor-
respond to transitions in each component structure, and initial states
should correspond to pairs of initial states. Under this interpretation,
the composition of M and M’ will in fact give rise to the structure in
figure 3.8. 0

The only minor issue that remains is how to define the acceptance
conditions for a composition. We will do it in such a way that a path in
the composition corresponds to paths in the components. Also, given a
pair of paths in the components such that the labelings along the two
paths are compatible, we should be able to lift the pair to a path of
the composition. Consider a sequence of states (s, sg)(s1,5])-.. in the
composition of M and M’. In order to ensure that sgs; ... represents a
path in the first component, we want to check that for each (P,Q) € F,
either the s, are eventually entirely within P or infinitely often visit Q.
This is equivalent to the (s,, s}) eventually being entirely within P x 5’
or infinitely often visiting @ x S’. Each acceptance conaition pair in
F and F' is lifted to a pair for the composition in this way.

Definition 3.3 Let M and M’ be two structures. The composition of
M and M', denoted M || M', is the structure M" dcfined as follows:

I. S” s the set of pairs (s,58') € § x S’ for which L(s.a) = L'(s'.a)
for all @ in AN A"

2. 1" = (I x I')n S".

74 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

3. R"((s0,55), ($1,51)) iff R(so,5s1) and R'(sp, s})-
4. A”=AUA.

5. L"((s,s'),a) == L(s,a) for all @ in A. L"((s,s’),a’) = L'(s',a’) for
all a’ in A’

6. F"={((PxS)NS",(QxS)NS")| (P,Q) € F}
U{((SxP)NS"(SxQ)NS")|(P,Q) e F'}.

At the end of this chapter, we will give proofs that the above def-
inition of composition is commutative and associative (up to isomor-
phism), and also that proposition 3.1 holds.

3.4 Simulation Relations

Now we proceed to the definition of simulation. The intuition is similar
to that behind traditional Milner-style simulation [70], except that we
consider infinite paths instead of single transitions.

Definition 3.4 Let M and M’ be two structures with A D A’. A
relation C over S x S’ is a simulation relation between M and M’ if
for all s and s’ satisfying s C s’, the following conditions hold:

1. L(s,a') = L'(s',a") for all a' in A".

2. For every path # = s081s;... starting at s = sp, there exists a
path ' = s{s}s;... starting at s’ = s; such that for all i, s; CC &/

The state s of M is simulated by the state s’ of M' (M,s < M' s')
whenever there exists a simulation relation C between M and M’ such
that s C . (We often omit M and M’ when they are clear from
context.) M’ simulates M (M < M') whenever for every state s € I,
there exists a state s’ € I’ such that M,s < M',s’.

Note that in this definition, M’ may have a smaller set of visible
state components than M. In this case, we view A’ as being the exter-
nally visible state components, and A — A’ as internal components.

3.4. SIMULATION RELATIONS 75

Example 3.7 Consider the countdown timer example (example 3.4).
The structure corresponding to the Moore machine of figure 3.4 is given
in figure 3.9. We will denote this structure by M. The structure M’

So $ S2 83

Figure 3.9: Structure for a countdown timer

for the abstract model of a countdown timer is shown in figure 3.10.
We have that M < M'. To see this, define the relation C by s T s’ iff
L(s) = L'(s"). That is, sy is related to sq, s1, and sp; s} is related to
s3; sy 1s related to sq4, ss, and sg; and s} is related to s;. This obvi-
ously satisfies the first condition for a simulation relation: related states
have compatible labelings. All paths in M have corresponding paths
in M’: for example, the path sos;s25357505)525387... corresponds to
50505051 535080503155 - ... Thus, C is indeed a simulation relation. No-
tice that because of the acceptance conditions, the sequence sfsjs} . . .
is not a path in M’. This is as expected: there is no path in M where r
remains 0 indefinitely and e never becomes 1. Finally, for every initial
state of M, there is an initial state in M’ that is related under C. D

Example 3.8 Let A be a set of visible state components, and define
T(A) to be the following structure M:

1. S is the set of labeling functions over A.

76 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 1

~ Figure 3.10: Structure for the abstract model of a countdown timer

3.4. SIMULATION RELATIONS 77

2. 1=8.

3. R=S5xS.

4. L(f,a) = f(a) for all f € S.
5. F=0.

This structure has one state for every possible valuation of the visible
state components. Every state is initial, and there is a transition be-
tween any pair of states. Further, the acceptance condition is empty, so
all sequences of states are legal paths. The structure T(A) can simulate
any other structure whose visible state components include A.

Define L(A) to be the structure M with S=I/=R=F =0. Ev-
ery structure whose state components are contained in A can simulate

1(A). o

Example 3.9 Let M be a structure, and suppose that we add initial
states and transitions to M to obtain M’. (Thatis, S=5', [C I’ and
R C R'.) Then {(s,s) | s € S} is a simulation relation, and M <X M".
Also, if M has (P,Q) as part of its acceptance condition, then we can
drop the entire pair from F’, or we can enlarge P and @ (with respect
to set inclusion) and still maintain the relationship M < M'. O

Example 3.10 Here, we consider a way of hiding internal information
in a structure M. Let collapse(s) = L(s) for s € S. In other words,
collapse maps a state to the labeling function for that state. Thus,
the only information we have about a state after collapsing is what we
can observ- directly. We extend collapse to sets of states and relations
between states in the natural way. Then we take collapse{(M) to be the
following structure M":

l. 8" = collapse(S5).
2. I' = collapse(1).
3. R = collapse(R).

4. M= A

78 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

5. L'(L(s),a) = (L(3))(a). (The labeling of a labeling function is
given by the labeling function itself.)

6. F' = {(collapse(P), collapse(Q)) | (P,Q) € F }.

Now {(s,L(s)) | s € S} is a simulation relation between states of M
and states of M', and M X M'.

As an example of this type of collapsing, let M be the countdown
timer of figure 3.9. When we collapse M, we obtain the structure shown
in figure 3.11. This is almost the same as the abstract countdown timer
model (figure 3.10); the only difference is that collapsing leaves us with
an empty acceptance condition. 0

7
S0

) 1O

Figure 3.11: Collapsing of the structure for a countdown timer

We now examine some of the properties of the relation <. Most
of these were mentioned earlier in section 3.2. The proofs of these
properties will be deferred; here, we will just try to give the intuition
behind each proof.

The first property tells us that the relation < between states is
itself a simulation relation, and is in fact the largest simulation relation
(under the set inclusion ordering}).

3.4. SIMULATION RELATIONS 79

Theorem 3.1 Let M and M’ be two structures with A 2 A’. The
relation X (between states) is the largest simulation relation between
M and M’ (under the set inclusion ordering).

To see this, imagine that we have two states s and s’ that are re-
lated by <. By definition, we must have some simulation relation C
that relates the states. This implies that the states have compatible
labelings. Further, if we look at a path x from s, there must be some
path from s’ that corresponds to = via C. But since corresponding
states on the two paths are related by C, they must also be related
by <. Hence =< satisfies the conditions for a simulation relation.

The next property forms the basis for doing hierarchical verification.
The important part is that < is a transitive relation.

Theorem 3.2 The relation < is a preorder.

Reflexivity is obvious. For transitivity, suppose we know that M =<
M’ and M’ < M"”. Intuitively, if we take a state s in M, then we should
be able to find a state s’ in M’ that simulates it. Then this state can
be simulated by some state s” of M”. Now the labelings of s and s”
must clearly be compatible. Further, given a path from s, we can find
a corresponding path from s’, and this latter path has a corresponding
path from s”. This gives us a correspondence between paths from s
and paths from s”. Formally, we would show that C defined by:

C={(s8")|3'[s xs'Ans"<5"]}

is a simulation relation.
Next, we prove that composition respects the preorder. This is used
to substitute specifications for implementations in compositions.

Theorem 3.3 For all structures M and M’ if M < M’ then M||M" <
M| M".

To see why this is true, consider a state (s,s”) of M || M"”. Since
M' can simulate M, there should be some state s’ that can simulate s.
Now, since the labelings of s and s’ must be compatible, (s, s”) must be
a state of the composition M’||M”. Given a path in M||M" from (s, s"),

30 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

we can project this down into paths 7 and 7" in M and M”, respectively.
Now 7 can be simulated by a path #’ from s’, and 7’ and 7" can be
combined into a path in M’ || M” from (s’, s"). Formally, we prove that

g = {((S.,S" ,(8',3”)) | s j S’/\ sII e SII}

is a simulation relation.

The final property that we will use is slightly less intuitive than
the others. It essentially states that composition with a structure M is
idempotent, i.e., doing it more than once has no effect. Perhaps the best
way to think of this is as follows: view a structure M as specifying in
some way a set of allowed behaviors. Composition with M is essentially
intersecting with this set. Once we have done this, intersecting again
will obviously result in no change.

Theorem 3.4 For every structure M, M <M || M.

The proof of this one is simple: we just note that { (s,(s,s)) | s € S}
is a simulation relation.

Now that we have finished defining our preorder and notion of com-
position, we can be more piecise about how to do compositional and
assume-guarantee style reasoning in our framework. Recall that in sec-
tion 2.5, we defined the notion of the maximal closing environment
for a Moore machine, and also argued that M || E(M) was isomorphic
to struct(M). We have an analogous result when dealing with struc-
tures alone. Note that while there is no notion of input and output,
and hence no real notion of a closed system, there is a natural maximal
environment for a structure M. Also recall the structure T(A) defined
in example 3.8; T(A) is able to simulate any structure whose visible
state components include those in A. Suppose that M is viewed as a
component, and say that the environment M’ will interact with it via
some state components B C A. Then, since A’ includes B, we know
that T(B) can simulate M'. Now applying theorem 3.3, we find that
MM’ < M||T(B). Hence, if we want to check that a specification A"
is true for any environment M’, we can just verify M || T(B) < ",
since transitivity would then give M || M’ <X M". (Also, T(B) is a
potential environment.) However, we also have the following result:

3.4. SIMULATION RELATIONS 81

Theorem 3.5 Let M be a structure and B C A; then M is isomorphic
to M| T(B)

The proof is deferred, but basically consists of the observation that
each state of M is paired with a unique state of T(B) in the composi-
tion, and that the transition relation of T(B) is the universal relation.
This result means that when we check M < M", where M is viewed as
a component, we are really checking whether every system containing
M satisfies the specification M”. On the other hand, if M is viewed
as a complete system, then we would just be checking that M has the
specified property. In essence, doing a compositional verification, where
we are working with individual components, will involve the same un-
derlying check as doing a global verification. Because of this, we will
generally omit any mention of maximal environments in what follows.
They may be inserted where appropriate, depending on whether the
structures we are working with are viewed as complete systems or not.

Recall that in an assume-guarantee style proof, we work with triples
of the form (assumptions)M (guarantees). We will allow assumptions
and guarantees to be given either via temporal formulas or via struc-
tures. To check a triple, we compose the assumptions with M, and
then check that the result can be simulated by the guarantees. Consider
a simple assume-guarantee style argument such as the following:

(YM(M,)
Mw)M’(A/ld/)
OM || M'(My).

Reexpressing this in terms of compositions and simulation checks gives:

M <M,
M, || M < M,
M| M <M,

We can justify the soundness of the argument using the properties of
= and ||. Stuce M < M,, we can compose both sides with M’ to obtain
MM < M,||M'. We are given that M, || M' X My, so by transltlvnty
we have the desired conclusion.

82 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART I1

Let us also consider a more complex argument that requires the use
of theorem 3.4:

(OM(M,)
(M,)M'(M,)
(My)M (M)

OM || M'(M,).

Translating gives:
M<M,
Mcp “ M’ = Mw
My | M < M,
MM =2M,.

As above, M < M, and M, || M’ < M, implies that M || M’ <X M,.
Composing both sides with M leads to M | M’ || M X My || M. Now
My || M < M,, so by transitivity we obtain M | M’ || M < M,. Since
composition is commutative and associative, we get M || M || M’ < M,.
Now we are almost at the desired conclusion, but we have an extra M.
Theorem 3.4 tells us that M < M || M. Composing both sides of this
with M': M || M' <X M || M || M’'. Finally, applying transitivity gives
the desired result, M || M/ < M,.

3.5 The Tableau Construction

So far, we have defined notions of composition of structures and sim-
ulation that allow us to do hierarchical and assume-guarantee style
reasoning where the specifications are given as structures. We have
also hinted that there is a correspondence between simulation and sat-
isfaction of a formula by a structure; in this section, we make that
correspondence precise.

Our tableau construction will have the same flavor as many oth-
ers: states of the tableau will consist of information about the labeling
for the visible state components, plus information about what things
should hold in successor states [5, 27, 64, 78, 92]. This latter informa-
tion is used to constrain the transition relation.

Example 3.11 Consider the formula AFa = 1 that we used earlier
(example 3.2). A state of this tableau will be viewed as consisting of:

3.5. THE TABLEAU CONSTRUCTION 83

1. information about whether a is 0 or 1; and

2. information about whether the eventuality has been fulfilled yet
or not. This information is based on the fixed point equation for
AF: those states where AFa = 1 are true are those for which
a = | or for which AX AF ¢ = 1 holds. We can tell whethera =1
based on the visible state component information. However, in
order to tell whether A X AFa = 1 holds, we add a bit to the
state that will be 1 for those states satisfying AX AFa = 1.

Now a state that has the bit for Ax AF a = 1 set will be constrained to
have successors that either have a = | or have the bit for AX AFa =1
set. o

The information about what has to hold in the next state is captured
using the notion of an elementary formula. Each elementary formula
will have the form AX ¥ and will be associated with a bit of information
in the states of our tableau. When the bit associated with AX ¢ in
a state is 1, it will mean that the successors of that state must be
constrained to be those states where ¥ holds. The elementary formulas
of a formula p will be obtained by looking at those subformulas of ¢
involving a tempcral operator. Each subformula AX y will itself be
an elementary formula. For subformulas such as A(y U \), we will
use AX A(x» U x) as an elementary formula. In the example above,
AX AF a = | would be the only elementary formula of AF a = 1.

Definition 3.5 The set of elementary formulas of the formula o, de-
noted by el(y), is defined as follows:

1. el(true) = 0.

2. ella =d) = 0.

3. el(~p) = el(yp).

1oellp Aib) = el(p Vb)) = el(p) Uel(d).

el(AX p) = {AX p} U el(p).
el{A(U) = {AX A(p U)} U el() U el(3).
el(Alp V) = {AX A(p V)} Uel() U el()

-

84 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

The states of the tableau for ¢ are going to have the form (f, £),
where f € labelings(comp(y)) and E C el(p). That is, a state will be a
labeling plus a set of elementary formulas (the ones that are supposed
to be true at the state). Now suppose that AX ¢ is an elementary
formula that is supposed to hold at some state. We want to constrain
the successors to be those states where ¥ is true. But since we have not
yet constructed the transition relation, how do we know which states
are supposed to satisfy ¥? At first, it seems that we are caught in a kind
of circularity. We will avoid the problem by using a mapping ¢ that
tells whether a formula should be true of a state based only on the state
and not on its successors. Consider, for example, determining whether
a state satisfies AFa = 1. If the labeling of a in the state is 1, we
know it satisfies AF a = 1. If the labeling of a is 0, then the only way
that AF a = 1 can be true is for all of the state’s successors to satisfy
AFa = 1. In other words, the state should satisfy A X AFa = I.
This, however, is an elementary formula, and we can tell whether it
should be true by looking only at the state. Overall, a state should
satisfy AFa = 1 when it is labeled with ¢ = 1 or A X AFa = 1.
Given a subformula ¥, ®() will give the set of states in the tableau
that should satisfy 1. Then, if a state is marked with the elementary
formula AX vy, we simply ensure that all of its successors are within
the set ®().

The only part of the construction that we have not yet explained
is the method by which we ensure that eventualities are fulfilied. This
will be done using the acceptance conditions. Consider the formula
AF a = | again. A state that is supposed to satisfy AXAFa = 1
has as its successors those states where « = 1 or where A X AFa = 1
should hold. The danger is that we may pass continually through states
where @ = 0 but which should satisfy A X AFa = 1. We can eliminate
this possibility by requiring that infinitely often, we visit a state where
a = 1 or where AX AFa = 1 is not supposed to be satisfied. We
now give the construction. (Note: the definition below does not handle
certain degenerate cases. Since the changes needed to handle these
cases are somewhat nonintuitive, we defer them until section 3.8.)

Definition 3.6 The tableau of ¢ (over a set of state components A 2
comp(y)) is denoted T () and is the structure M given by:

3.5. THE TABLEAU CONSTRUCTION 85

1. S = labelings(A) x 2¢(¥).

S\D

I = ®(y), where ® is the map from subformulas and elementary
formulas of p to S defined as follows:

(a) O(true) =

(b) ®(a = d)={(fE)€Slfa) d}.

(c) (‘*1/)) =5 - o(¥).

(d) (¥ A x) = &(¥)NS(x).
(wa)*-' () U &(x)-

(e) If AX 1 is an elementary formula of ¢, then
d(AX)= {(fLE)ES|AXYeE}.

(f) ®(A(¥ Ux)) = &(x) U (e(¥)NS(AX Ay Ux))).
P(A(Y VX)) = o(x) N ((¥) U (AX A(¥ V x)))-

3. R((fo, Eo), (f1, E1)) iff for all AX ¢ € el(p), AX) € Ep implies
(fi, E1) € O(9).

4. L((J,E),a) = f(a).

5. The acceptance condition specifies that we cannot have an even-

tuality AX A(y U x) where x is never fulfilled.
F={(0,(S-9(AXA(+Ux)))ud(x)) | AXA(¢Ux) € el(v) }.

Example 3.12 Back in example 3.1, we argued that assume-guarantee
style reasoning could be used to verify that the composition of the cir-
cuits given in figures 2.2 and 2.4 satisfied the specification AG(p =
0V q = 0). Let the structures for these two circuits (shown in figures
3.6 and 3.7, respectively) be denoted by M and M’. In our assume-
guarantee proof, we were going to use AG(r =0 - AX g = 0) as an
assumption about M’, and then prove the desired property by combin-
ing this assumption with M:

M (AG(r=0— AXq¢=10))

(AG(r =0 — AX ¢ = 0)M{AG(p =0V , = 0)
()A’W ” Afl’(AG(p =0VvVgq= 0))

86 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

Checking {()M'(AG(r = 0 — AX q = 0)) will be done with our stan-
dard model checking techniques. However, in order to check

(AG(r=0—-AX¢=0))M(AG(p=0Vq=0)),

we need to construct the tableau for AG(r = 0 - AXg¢ = 0) and
compose it with M. The states of the tableau will have valuations for
r and ¢, plus information about the elementary formulas. In this case,
there are two elementary subformulas: A X AG(r = 0 —- AX ¢ = 0)
and AX ¢ = 0. Let ¥ be the first of these, and let x be the second. The
(reachable states of the) tableau are shown in figure 3.12. In the figure,
the states are labeled with ¥ and x to indicate where these elementary
subformulas are true, even though ¥ and x are not actually visible state
components. Also, most of the transi.ions between states are present,
so for clarity, the figure uses dashed lines to show which transitions are
missing. The initial states are those in ®(AG(r = 0 - AX ¢q = 0)).
This is equal to

d(r=0— AX q=0)N(P(false) UP(AX AG(r =0 - AX ¢ =0))).

(The ®(false) comes from the fact that AG ¢ is an abbreviation for
A(false V 9).) Evaluating this expression yields those states (f, E)
where:

1. either f(r) =1 or AXqg=0(x)isin F; and
2. AXAG(r=0—- AXqg=0)) () isin E.

This is all of the states shown in the figure. Further, since y» € E
for all of these states, all their successors must be in ¢(AG(r = 0 —
AX q = 0)), i.e., we cannot leave the set of states shown. This is how
the AG is continually enforced. Also note that the transitions that are
missing are those from states where x should be true (the lower four
states) to those where ¢ is 1 (the leftmost three states). This enforces
the constraint that when a state should satisfy AXq = 0, it in fact
does. After constructing the tableau and doing the model checking, we
find that

(AG(r=0— AXq=0))M(AG(p =0V q=0))

3.5. THE TABLEAU CONSTRUCTION 87

does indeed hold, and so we can in fact conclude
M || M (AG(p=0V q=0)),

which is the desired result. a

S
’
’

Cmccdmcendecmcen.

Figure 3.12: Tableau for AG(r =0 — AX ¢ = 0)

Example 3.13 ln this example we consider a tableau that has a non-
trivial acceptance condition. The actual tableau for AFa = 1 is
shown in figure 3.13. In the figure, 1 denotes the elementary formula
AX AF a = 1. Asin figure 3.12, only the missing transitions are shown.
In this case, we cannot go from a state where AX AFa = 1 holds to
one where both @ = 0 and ~AX AF a = 1. The acceptance condition
requires that if AX AF a = | becomes true, then eventually we must
make a transition to a state where a = 1. O

We now state the formal connection between satisfaction and sim-
ulation. The proof is deferred.

88 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART Ii

‘ ’ :
’
.
’
.
.
.
’
s
.
.

Figure 3.13: Tableau for AFa =1

Theorem 3.6 Let M be a structure and let » be an ACTL formula
such that A O comp(p). Then M | ¢ if M =< T(p), where the
tableau is over any subset of A containing comp(yp).

We also note that the tableau construction can also be used to do
temporal reasoning. In ACTL, ¢ — 1 is generally not a legal formula
due to the restriction that we only use the A path quantifier. Thus, we
cannot use the usual trick of checking whether » — ¥ is a tautology.
Instead, we use a semantic notion of entailment.

Definition 3.7 Let ¢ and ¥ be ACTL formulas. We write p | w
whenever for every structure M with A 2 comp(p)U comp(), if M =
@, then M .

The formula is a tautology iff {rue = p. ¢ is satisfied by some
nontrivial structure (one with a non-empty set of initial states and
some path starting at one of these states) iff it is not the case that
¢ E AX false. We can check for semantic entailment using the tableau

construetion in the obvious way.

Proposition 3.2 » | v iff 7(p) E w. (The tablean is over comp(2)U

comnp(y).)

3.6. EXAMPLE: A SIMPLE CPU CONTROLLER 89
Since the proof is short, we give it here.

Proof Suppose ¢ = ¥. The tableau for ¢ satisfies ¢, so by definition
of semantic implication, it satisfies ¥ as well.

Suppose T(p) E ¢, and let M be a structure with A 2 comp(p) U
comp(y). If M = ¢, then M < T(¢). But T(¢) = ¥, and so T(p) =
T (¢). By transitivity, M < T (), and so M [. a

3.6 Example: A Simple CPU Controller

In this section, we describe a controller for a simple stack-based CPU
and give some ACTL specifications describing its correctness. Then we
prove these properties using assume-guarantee style reasoning. This
CPU controller design is from a paper by Clarke, Long, and McMil-
lan [32].

Figure 3.14 gives a block diagram of the CPU. The controller con-
tains two main modules: an access unit (AU) and an execution unit
(EU). The access unit controls the fetching of instructions and the reads
and writes to data memory. Instructions are prefetched and stored in an
instruction queue (I1Q), so that the execution unit will spend less time
waiting for instructions to he obtained from memory. The AU also
maintains a top-of-stack register (TS) that caches the memory word
corresponding to the current stack pointer. Words that are pushed
on the stack are stored in this register and flushed to memory wheu
time permits. Similarly, a pop instruction can use the contents of this
register without waiting for memory; while this is happening, the TS
register is refilled. The execution unit is actually in charge of interpret-
ing the instructions. Our specification will deal mainly with properties
of the AU part of the controller, so we will not discuss the EU in de-
tail. We now turn to the signals used by the AU to communicate with
its environment. These signals will be used when we give the formal
specification later.

The aceess unit communicates directly with the execution unit via
a set of eight lines. Four run from the exeention unit to the aceess
unit: push, pop. fetch and branch. These signals are used by the EU to
express its request to perform the indicated operation. The push and

90 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

ush, po,
mem-rd, mem-wr push, pop
fetch, branch
- mem-ack . Access [Execution
Unit = A . —»1 Unit
push-rdy, pop-rdy
M j Setch-rdy, branch-rdy * ?
emory
Address
and g IQ
Data
-]
, A |
! 5 —{ ALU
Register

Figure 3.14: CPU block diagram

3.6. EXAMPLE: A SIMPLE CPU CONTROLLER 91

pop signals are used to manipulate the stack, and the fetch signal is u_ed
to get the next instruction from the IQ. The EU uses the branch signal
to tell the AU that it wants to execute a (conditional or unconditional)
branch and that the instruction queue should be flushed and refilled
starting at the new program counter (PC) value. Each of these signals
has a corresponding acknowledgment going from the AU to the EU:
push-rdy, pop-rdy, fetch-rdy and branch-rdy. When, e.g., push and
push-rdy are both high, a word is pushed on the stack. The AU may
assert these ready signals before the EU requests the corresponding
operation; they are used by the AU to indicate its ability to perform
the indicated action immediately.

The access unit also has outputs that control memory reads and
writes, and that go to elements of the data path such as the PC and
TS registers. The signals mem-rd and mem-wr are set high to indicate
that a memory read or memory write should be performed. The word to
be placed on the memory address lines is signaled by SP-to-mem-a and
PC-to-mem-a; these drive the stack pointer and program counter onto
the address lines, respectively. The top of stack register is driven onto
the memory data lines using TS-to-mem-d. Data coming from memory
can be gated into the TS register or into the IQ via mem-d-to-TS and
mem-d-to-IQ. The memory signals completion of a requested opera-
tion using the mem-ack input. To execute a memory cycle, the AU
simultaneously asserts mem-rd or mem-wr together with one of the
signals controlling the memory address bus. When writing, it also as-
serts TS-to-mem-d to drive the data bus. When executing a read, it
directs the data into either the TS register or the 1Q. It holds these
signals until mem-ack is asserted, then it lowers its control signals and
proceeds.

Machine instructions are eight bits long, and two are packed into
each sixteen bit machine word. The [Q holds one word which is fetched
from an even-aligned address. Hence, when an instruction correspond-
ing to an odd programn counter address is used by the EU. the 1Q must
be refilled. The low bit of the program counter, P(’y, is available to
the AU so that it can detect this situation.

The model of the CPU controller is given in the hardware descrip-
tion language CSML (Compositional State Machine Langnage) (32].
CSML is an extension of the SML language [14] and is designed to sup-

92 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART [I

port the modular design of finite-state controllers. It provides a module
facility to augment SML’s procedural description constructs. From the
point of view of our verification techniques, the important feature is
that its output is a series of Moore machines, one per state machine
in the design. We will not go into detail on all the facilities of CSML
here. Instead, we will give a simple example, and then proceed to the
CSML code for the AU.

Figure 3.15 is a CSML program describing a system composed of
a producer module and a consumer module which synchronize using a
four-phase handshake. In CSML (as in SML), raising or lowering an
externally visible signal takes one time step, i.e., one Moore machine
transition occurs. All other computation takes no (external) time. The
raise and lower statements are used to set and reset signals. The
control constructs such as while and loop have the obvious meanings.
The process declarations (starting on line 26) actually create the two
Moore machines in this example. A processtype (line 4) is used to
give a template for each machine.

We now turn to the CSML description of the AU. The main func-
tions of the AU are managing the TS register and the 1Q. The top-of-
stack register can conceptually be in one of three states.

1. It may be invalid, in which case the EU is allowed to push (store
data in TS), but not pop (get data from it).

2. It may be valid, meaning that the data in TS matches what is in
memory at the address indicated by the SP. In this case, the EU
may either push or pop.

3. It may be modified, meaning that the EU has placed data in the
TS register and that data has not yet been copied out to memory.
In this case, then EU is allowed to pop, but it cannot be allowed
to execute a push.

The transitions between these states are as shown in the state transition
diagram in figure 3.16.

Part of the AU code that is used to control the TS register state
is shown in figure 3.17. This code tells how the state changes when
the EU executes a push or pop. The compress statement (line 2) is

3.6. EXAMPLE: A SIMPLE CPU CONTROLLER 93

[SV I

[S=Tv SRR =N <

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25

26
27
28

program prodcom
output produce,consume;
internal req,ack;

processtype producer(request, acknowledge, produce)
input request;
output acknowledge=false, produce=false;
loop
vhile ('request) do loop skip endloop;
raise(produce); lower(produce);
raise(acknowledge) ;
vhile (request) do loop skip endloop;
lover(acknovledge)
endloop
endtype

processtype consumer(acknowledge, request, consume)
input acknowledge;
output request=false, consume=false;
loop
raise(request);
while ('acknowledge) do loop skip endloop;
raise(consume); lower(consume);
lover (request);
while(acknowledge) do loop skip endloop
endloop
endtype

process producerl: producer(req, ack, producej;

process consumerl: consumer(ack, req, consume)
endprog

Figure 3.15: Producer-consumer program in CSML

94 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART i

TS-load A mem-ack TS-store A mem-ack

popped pushed

modified

invalid

popped

Figure 3.16: TS state transition diagram

3.6. E..AMPLE: A SIMPLE CPU CONTROLLER 95

used to cause all the state changes to happen in one external time step
(one Moore machine transition). The ts_st variable is used to hold
the current state of the TS register.

1 loop

2 compress

3 switch

4 case ((ts_st == valid) | (ts_st == invalid))
5 & push & push_rdy:

6 lover(push_rdy);

7 raise(pop_rdy);

8 ts_st := modified;

9 break;

10 case ((ts_st == valid) | (ts_st == modified))
11 & pop & pop_rdy:

12 lover (pop_rdy) ;

13 raise(push_rdy);

14 ts_st := invalid;

15 break;

i6 default: skip;

17 endswitch

18 endcompress

19 endloop

Figure 3.17: CSML code implementing TS control

The other piece of code respousible for setting the TS state is the
section in charge of memory accesses. This section is shown in fig-
ure 3.18. The second and third elements of the case statement examine
the state of the TS register. If it is invalid (and the EU is not trying
to execute a push), then the AU may load the register from memory
(line 12). If the state is modified (and the EU does not want to pop),
then the TS contents are copied to memory (line 21). This part of the
code 1s also responsible for prefetching instructions (line 3).

The access unit also manages the 1Q. This is done in a similar
manner to the TS register control (figure 3.17); for brevity, we omit the

96

I =R L B S JUR N

—
[OVIN L o R e B]

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

loop
switch
case iq_st == invalid:
compress
lower(branch_rdy) ;
read(pc_to_mem_a, mem_d_to_iq);
iq_st := valid;
raise(fetch_rdy);
raise(branch_rdy) ;
endcompress;
break;
case ts_st == invalid & !push:
compress :
lower(push_rdy);
read(sp_to_mem_a, mem_d_to_ts);
ts_st := valid;
raise(push_rdy);
raise(pop_rdy)
endcompress;
break;
case ts_st == modified & !pop:
compress
lower(pop_rdy);
write(sp_to_mem_a, ts_to_mem_d);
ts_st := valid;
raise(push_rdy);
raise(pop_rdy)
endcompress;
break;
default: skip;
endswitch
endloop

Figure 3.13: CSML code for controlling memory accesses

3.6. EXAMPLE: A SIMPLE CPU CONTROLLER 97

actual code. Altogether, the AU is composed of these three threads of
control (TS and IQ managers, and memory access manager) running in
parallel. When processed by the CSML compiler, the result is a Moore
machine with thirteen states.

The execution unit is more complex; it essentially consists of a large
case statement, with one case per instruction. We will not give the
code here, but it compiles into a Moore machine with 98 states. The
combined CPU controller, plus a two state memory model, is a Moore
machine with 1077 states.

We now give a formal specification of the AU in ACTL. A formal
specification of the EU will not be given; it would consist of a large
number of cases (one per instruction). To begin, we will define a few
abbreviations that will be used throughout the formulas here. The first
ones are used to say that a push, pop, fetch or branch has occurred.
Each of them is a conjunction of an EU request signal and an AU
acknowledge signal.

pushed = push A push-rdy

popped = pop A pop-rdy

fetched = fetch A fetch-rdy
branched = dranch A branch-rdy

The next three tell when the 1Q is being loaded and when the TS
register is being loaded or stored into memory. For example, the 1Q is
being loaded when the PC is being driven onto the memory data bus,
the AU is reading from memory, and the data from memory is being
gated into the 1Q.

TS-load = mem-rd A SP-to-mem-a A mem-d-to-TS
TS-store = mem-wr A SP-to-mem-a A T'S-to-mem-d
[Q-load = mem-rd A PC-to-mem-a A mem-d-to-1Q

The last one states that the final instruction in the [Q has just been
fetched.

1Q-empticd = fetched N PCy

The first class of formulas are some basic safety properties of the
access unit. They require that the AU not issue spurious reads and

98 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

writes, and that each memory access be an 1Q or TS load, or a TS
store.

AG(SP-to-mem-a — TS-load V TS-store)
AG(mem-d-to-TS — TS-load)
AG(TS-to-mem-d — TS-store)

(3.
(3.
(3.)

AG(PC-to-mem-a — [Q-load) (3.
(3.
(3.
(3.

-‘- C~ lv —

AG(mem-d-to-1Q) — [Q-load)
AG(mem-rd — TS-load v [Q-load)
AG(mem-wr — TS-store)

ww&a@uwﬁ«.w

\JC*C}‘

1)
)
)
)

We also cannot allow multiple memory accesses to be attempted at the
same time. The AU should not, e.g., drive both mem-rd and mem-wr
high at the same time.

G(—TS-load V ~TS-store) (
AG(-TS-load v ~1Q-load) (:
G(—TS-store V - [Q-load) (3.

Next, we require that if the AU requests a memory operation, then
it must continue to request that operation until it receives an acknowl-
edgment. That is, memory requests cannot be aborted in mid-cycle.
We can cxpress this using the V operator: mem-ack will release the
requirement that the load or store signals remain stable.

AG(TS-load — A{mem-ack V TS-load)) (3.11)
AG(TS-store — A(mem-ack V TS-store)) (3.12)
AG(IQ-load — A(mem-ack V [Q-load)) - (3.13)

Also, the access unit should not offer the EU the chance to push, pop
fetch or branch while a memory cycle that might interact with the op-
eration is going on. (These requirements ensure. e.g.. that the address
being driven onto the memory address bus does not change.)

AG(TS-load v TS-store — —push-rdy A —pop-rdy) (3.11)
AG(/Q-load — —fetch-rdy A —branch-rdy) (3.15)

3.6. EXAMPLE: A SIMPLE CPU CONTROLLER 99

The next set of properties are used to check that the operations
allowed by the access unit on the TS register follow the state transition
diagram given in figure 3.16. Note that when the state of the TS
register is valid, then either a push or a pop is legal. Also, while the
actual AU does not load or store the top-of-stack in this state, doing
so would not cause an error. Hence, we impose no constraints on the
actions performed while TS is valid. Next, consider the invalid state.
This state is entered when a pop operation is executed. Starting from
this state, we cannot allow another pop, and we cannot sture the TS
register into memory. The TS register will cease to be invalid after
the TS register is loaded from memory, or after the EU pushes a word
on the stack. Thus, we want to express “after a pop, no pop or TS
store can occur until after a TS load or a push.” This is done with the
following formula:

AG(popped - AX A((TS-load A mem-ack) V pushed
V =pop-rdy A = TS-stare)). (3.16)

The TS register should also start out in the invalid state, so we obtain
the related requirement:

A((TS-load A mem-ack) vV pushed V =pop-rdy A ~TS-load). (3.17)

If the TS register is in the modified state (as the result of a push), then
both pushes and TS loads are illegal. The TS register state should onlv
change when a pop occurs, or when the TS register contents are stored
into memorv. We express this requirement with the formula:

AG(pushed — AX A((TS-store A mem-ack) V popped
V —push-rdy A =~ TS-load)). (3.138)

We now turn to requirements for how the IQ is managed. The IQ
can be in one of two states: wvalid, indicating that there is a valid in-
struction in the queue waiting to be fetched; and invalid, indicating
that there s no such instruction. Figure 3.19 shows the possible transi-
tions between these states. When the [Q is in the ralid state, we have
no constraints on fetches. The [Q) state changes to invalid when either
a fetch from the last location in the queue or a branch occurs. From

100 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

1Q-load A mem-ack

1Q-emptied V branched

Figure 3.19: 1Q state ‘rarsition diagram

the invalid state, no additional fetches can be allowed until the 1Q is
loaded from memory. Thus, we have the requirement:

G(1Q-emptied V branched
— AX A(/Q-load A mem-ack V —fetch-rdy)). (3.19)

The 1Q also starts in the invalid state, so we also have the related

formula:
A(1Q-load A mem-ack 'V —fetch-rdy). (3.20)
Note that all of the above properties are safety properties; none
of them make any guarantees that progress will occur. The following
formulas are used to specify that pushes, pops, fetches, and branches
always complete.

AG(push — AF pushed) (3.21)
AG(pop — AF popped) (3.22)
AG(fetch — AF fetched) (3.2:3)
AG(branch — AF branched) 3.21)

Finally, we check that the controller continually fetches new instruc-

tions:

AG AF fetehed (3.29)

We used a BDD-based model checker to verify that the svstem com-
posed of the AU and EU satistied the above specification (with some
weak assumptions about how the memory behaves). The basic safety
properties (formulas 3.1 through 3.15) were checked using the AU alone.
As an example, for formula 3.1 we verified:

(YMau(AG(SP-to-mem-a — TS-load vV TS-store)).

3.6. EXAMPLE: A SIMPLE CPU CONTROLLER 101

. where M,y is the structure representing the Moore machine for the
AU. This implies that every system that can be constructed using the
AU satisfies this particular formula.

We also tried using just the AU to verify some of the more complex
properties such as formulas 3.16 and 3.18. All of the formulas failed to
check, so we examined the error traces produced by the model checker
to try to determine the cause of the failure. In all of the traces, the
inputs from memory were not behaving as we would have expected
in a real system. In particular, the memory acknowledgment signal
sometimes went high when there was no pending request. We therefore
constructed a model of how the memory was supposed to behave. This
model, which we denote by M,em, is shown in figure 3.20. The figure
depicts a Moore machine; the actual model used is the corresponding
structure.

mem-rd V mem-wr

Figure 3.20: Memory model

With this model of the memory as an assumption, all of the formulas
3.17 through 3.20 are true. So, for example, we have:

(Muem) Mau(A(1S-load A mem-ack V pushed V =pop-rdy A = TS-load)).

The specification given by 3.16 remains false however. Upon examining
the error trace, we find a situation where both the push-req and pop-req
signals become true simultaneously, i.e., the EU attempts both a push
and a pop at the same time. This behavior is obviously illegal, so we
make another assumption to eliminate it:

AG(—push-req V ~pop-req). (3.26)

With this assumption plus the assumption M, e, formula 3.16 becomes
true.

102 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

The only remaining properties to be checked are the progress prop-
erties, plus the assumption 3.26. First, we note that in order to be able
to ensure progress, the memory must be guaranteed to respond to re-
quests eventually. Consequently, we strengthen our assumption about
the memory’s behavior by adding acceptance conditions

GF(mem-rd A ~mem-wr — mem-ack)

and
GF(mem-wr A ~mem-rd — mem-ack).

If we now try to check that the AU, plus our assumption about the
memory, satisfies the formulas 3.21 through 3.24, we find that it docs
not. The reason is that the EU may make a request and then immedi-
ately remove it without giving the AU time to act. W= make additional
assumptions about the EU’s behavior to eliminate these possibilities.

AG(push-req — A(pushed V push-req)) (3.27)
AG(pop-req — A(popped V pop-req)) (3.28)
AG(fetch-req — A(fetched V fetch-req)) (3.29)
AG(branch-req — A(branched V branch-req)) (3.30)

We now attempt to verify property 3.21 for the AU, the memory model,
and the assumption 3.27. Again, the formula turns out to be false; in
this case, the problem is the EU issuing simultaneous requests. Ear-
lier, we used an assumption that push and pop requests were mutually
exclusive (formula 3.26). We strengthen this assumption so that it
states that every pair of operations requested by the EU must be mu-
tually exclusive. The weaker assumption can be discharged using the
stronger one; we simply check semantic implication between the two
formulas. Now using the AU, the memory model, the assumption 3.27,
and the mutual exclusion assumption, we are finally able to verify for-
mula 3.21. Similarly, we can verify each of the other liveness propertics
(through 3.24).

Now we have to check the final liveness property (3.25), plus the
assumptions that we made about the behavior of the EU. The assump-
tions about the behavior of the EU can be checked using just the EU, so

3.6. EXAMPLE: A SIMPLE CPU CONTROLLER 103

we successfully discharge them. As for formula 3.25, there are two ap-
proaches that we could use. The first would be to make some additional
assumptions about the EU and check the property using the AU and
these assumptions. We would need to know that the EU does not fetch
an instruction and then execute an infinite sequence of pushes, pops, or
branches. To express this, we could build an abstract model of the EU
such as the one shown in figure 3.21. This figure shows a Moore ma-
chine, but the actual model would be the corresponding structure plus
the indicated acceptance condition. In the figure, push-req has been
abbreviated to push, etc., and idle indicates that push-req, pop-req,
fetch-req, and branch-req are all low.

—push-rdy —branch-rdy

pu rdy

pop-rdy fetch-rdy

GF idle — GF fetch-req

- pop-rdy ~fetch-rdy

Figure 3.21: Execution unit model

The other possibility would be to try to check the property on the
EU. In this case, we would need to know that pushes, pops, ete., even-
tually complete. However, we have already verified these conditions in
properties 3.21 through 3.24. Using these properties as assumptions

104 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

together with the EU is indeed sufficient to prove AG AF fetched. In
summary then, we have managed to verify all of the properties. The
more complex parts of the specification required us to make an as-
sumption about how the memory behaved. Given an actual memory
system design, we would need to check that our model of the memory
(figure 3.20, plus an acceptance condition) could in fact simulate the
design.

3.7 Summary

We have provided a way of doing assume-guarantee style reasoning in
the context of ACTL model checking. In order to do this, we first made
explicit the important notion behind theorem 2.2: that of simulation.
Simulation is a natural relationship between implementation and spec-
ification. It leads directly to the ability to do hierarchical verification:
specifications at one level become “implementations” at the next. By
examining how simulation relates to composition, we were able to give
methods for compositional and assume-guarantee style reasoning. How-
ever, we already had one notion of satisfaction of a specification, . Via
a tableau construction, we proved that satisfaction of ACTL formulas
corresponds directly to simulation. This link gives us great flexibility
as to our specification methodology when performing assume-guarantee
proofs or doing hierarchical reasoning. We demonstrated these idcas
by verifying some properties of the controller for a simple stack-based
CPU. Further, the general framework discussed in section 3.2 can be
used to construct assume-guarantee style reasoning systems based on
other temporal logics.

3.8 Technical Details

In our framework, specifications and assumnptions can be given as either
formulas or structures. In the latter case, however, we need methods for
antomatically checking whether one structure simulates another one:
that is the subject we now consider. We describe two special case
methods that, in practice, cover most of the cases that arise. Further,

3.8. TECHNICAL DETAILS 105

these special case methods are generally much more efficient than a
fully general algorithm.

We have already seen one method; when we are given that the
structure M’ is the tableau for a formula ¢, we can check M < M’
by verifying M = ¢ using the standard model checking algorithm for
ACTL. While the model checking algorithm can detect when M A M’,
this fact alone is not very useful; rather, we would like to demonstrate
explicitly why this is the case. That is, we want to produce a coun-
terezample illustrating why the formula is false. Consider the problem
of demonstrating why ¢ is false at the state s. We break the task into
cases based on the top-level operator of .

1. If ¢ is an atomic formula (or the negation of an atomic formula),
we can just say why it is inconsistent with the labeling of s.

2. If p has the form ¥ A x, then at least one of ¥ and x must be
false at s. We call the counterexample procedure recursively for
the appropriate subformula. Dealing with disjunctions ¥ V x is
similar, but we have to demonstrate that both 1 and x are false
at s.

3. If o = AX 9, then we find a successor s; of s = s that is the
start of some path and for which ¢ is false at s;. (The states
that are the start of a path can be found using a standard fixed
point computation.) We display the “path” (actually the prefix
of a path) s¢s; ... and then show why s, does not satisfy 1.

4. When o has the form A(y¥ V x), then there must be a path
S05182 . . . starting at s = s¢ for which:

(a) x is false at some s;; and

(b) for all j < i, ¥ is false at s,.

Starting from sg, we search forward to find such a path. We will
compute a series of sets P, where P, represents the search frontier
after stepping forwards ¢ times. We begin with Py = {s0}. After
computing P,, we see whether there are any states in P; that are
the start of some path and that do not satisfy x. If so, then

106

It

CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

we have found one (or perhaps several) s, satisfying condition {a
above. We select one such s;; now we must back up to produce a
path to so. We see which states in P,_, can reach s, in one step.
Now s;.; is chosen from these states, and we proceed backwards
until we cventually reach s,.

Suppose now that every state in P, satisfies x. In this case, we
must search forward another step. However, we also need to be
sure that we do not pass through a state satisfying . Thus, we
let @, be the states in P, that do not satisfy y». We then define
P, 41 to be the states reachable by stepping forwards once from Q;.

The above procedure gives us a (prefix of a) path sgs)...s;...
where s; does not satisfy x and each s; for j < ¢ does not sat-
isfy . We display this prefix, then call the counterexample facil-
ity recursively to :how why ¢ is false at the s; (7 < ¢) and why
 is false at s;.

The most interesting case is for formulas of the form A{w U x).
Such a formula may be false for one of two reasons.

(a) There may be a path sgs;sz... from s = s¢ such that y is
false at some s;, and for all j < i, x is false at s;. We can
determine whether there is such a path (and if so, display
it) using the same techniques as above.

(b) There may be a path sys;3,... from s = s¢ such that y is
false at every state on this path. (That is, the eventuality is
never fulfilled.) This is the case we now consider.

Obviously, we cannot construct or display arbitrary infinite paths.
Instead, we will find finite sequences of states mg and = such that
momy (7 followed by infinite repetitions of 7y) is a path from s
satisfying these constraints. We can then display mg and my and
show why y is false at every state appearing in 7, or 7.

The question now is how to find such a pair of sequences. We
will do this by trying to find a fair strongly connected component
(FSCC). A strongly connected component (SCC) is a set of states
where each state in the set can reach every other state in the sct

3.8.

TECHNICAL DETAILS 107

via the transition relation. For every state, there is some SCC
that contains it (a singleton set is an SCC), and there is a unique
mazimal SCC (under the set inclusion ordering) containing the
state. An SCC is fair if it contains some path that stays entirely
within the SCC. We only want to consider states where there is
an infinite path along which x is false, so we first eliminate all
states not satisfying EG —x fiom the structure. (Note that s is
in the result.) Next, we compute the maximal SCC C containing
s. We then check to see whether C is an FSCC (this can be done
using a standard fixed point computation). If it is not, then since
s is the start of some path along which x is false, we know that
there must be a sequence of transitions from s leading out of C
to a state s’ that satisfies EG —-x. We then find the maximal
SCC containing s, test if this SCC is an FSCC, and, if necessary,
repeat the process. Eventually, we must find a state reachable
from s for which the maximal SCC is an FSCC. The sequence
of transitions from s to this state gives us mg, the prefix of the
infinite path that we are constructing.

Now we need to find a loop within the FSCC such that each pair
(P, Q) in the acceptance condition is satisfied along this loop. Re-
call that @ represents the “infinitely often” part of the constraint.
Let C denote the FSCC and without loss of generality, assume
that C is the SCC for s. Let us first consider the case where for
every pair in the acceptance condition, @) intersects C. In this
case, we can simply choose a state from each intersection, visit
these states in some order, and then return to s. The result is
a loop containing s along which some state in each Q is visited.
If we let m; be the sequence of states encountered in going once
around this loop, then clearly x{ is a path. Further, we restricted
ourselves earlier to those states satisfying EG -y, so we have
found a path along which x remains false.

Suppose now that for some of the pairs (P, Q) in the acceptance
condition, @ does not intersect C. In order to satisfy snuch a pair,
we must have a loop where each state on the loop is in P. Since s
may not be in P, we cannot necessarily find a loop containing s.
Thus, we may have to extend the prefix mg. Our goal will be to

108 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

find an FSCC C’ within C N P, then append a segment to my
that takes us from s to C'. Then we will find a loop within C”;
note that this entire loop will have to be in P. Thus, we can
eliminate (P, Q) from consideration. Eventually, we will either
eliminate all pairs (in which case any loop will satisfy all of the
“almost always” conditions), or we will be able to satisfy all of the
remaining pairs using the “infinitely often” parts. To find C’, we
let D be the intersection of C with P and then determine which
states in D are the start of a path that stays entirely within D.
Let D' be these states; we restrict our attention only to D’. We
choose one of these states, and then find its SCC (within D). If
this SCC is an FSCC, we have found C’. Otherwise, we simply
choose a different state of D’.

The other situation that arises most often in practice is for M’ to be
deterministic. By this, we intuitively mean that there is no state which
has transitions to two successors with the same labeling. (However,
note that there may be multiple states with the same labeling.)

Definition 3.8 M is deterministic if:
1. For all sp and s; in [(with so # $1), L(so) # L(s1).

2. Forall s € S, if R(s,se) and R(s,s;) (with s¢ # s1), then L(s¢) #
L(sy).
When M’ is deterministic, given states s and s’ and a path 7 from s,

there is only one possible path from s’ that could correspond to 7. Thus,
in this case, < essentially corresponds to w-language containment.

Definition 3.9 The language of M,se over a set of observable state
components A’ C A (denoted by A(M,so, A’)) is the set of sequences
of labelings occurring on paths starting from sq.

A(M . so, AY = { fofifa... | s0s182... is a path, Vi fi = L(s;) | A"}

(Recall that L(s;) | A’ denotes L(s;) with its domain restricted to .1".)
We write A(s, A’) when M is understood. The language of M is the
union of the languages for all of its initial states.

A(M, A" = |J A(M, s, A").

sel

3.8. TECHNICAL DETAILS ‘ 109

Proposition 3.3 We have the following relationship between language
containment and simulation:

1. f M < M’, then A(M,A") C A(M', A’) and for every s € I,
there is some s’ € I’ such that L(s) | A" = L'(s').

2. Suppose A(M, A’) C A(M’, A’), M’ is deterministic, and for ev-
ery s € I, there is some s’ € [’ such that L(s) | A’ = L'(s’); then
M=<xM.

The above relationship means that when M’ is deterministic, we
can check < by basically checking for language coniainment. This can
be done in polynomial time using standard techniques [26].

Proof Assume M < M'. Let ®# = s¢$15;... be a path from so € [
in M. There must exist a path 7’ = s{s]s;... from some s; € I' in M’
for which s, < s! for all 7. Since s; < s, we have L(s;) | A’ = L'(s}).
Hence the sequences of labelings corresponding to = and =’ are the
same, and so A(M,A’) C A(M’, A’). Obviously, for every s € [, there
is some s’ € I' such that s < s’, and hence L(s) | A’ = L'(s").

Suppose A(M, A"y C A(M’, A') and that M’ is deterministic. Let
C be the relation

{(s.) 1 L(s)] A" = L(s) A Als A') T A(s". AV).

We show that C is a simulation relation; suppose s C s’. By definition,
s and s’ agree on the labels of state componentsin A’. Let 7 = s¢s152. ..
be a path from s = 59 in M. Since A(s, A') C A(s', A’), there is a path
T = s5sysy ... from s’ = sg for which the labelings on the two paths
(with respect to A’) agree. Since A(sg, A') C A(sg, A') and M’ is
deterministic, A(sy, A') C A(s],A’). Also, L(sy) | A" = L'(s}); hence
s1 C s}. Applying the above argument inductively, we find s; C s! for
all 7.

Suppose now s € 1. By hypothesis and the fact that M’ is deter-
ministic, there is a unique s’ € I' such that L(s) | A" = L'(s’). If there
ts no path starting at s, then clearly s < s’ If there are paths from s,
then A(M, A’) C A(M’', A’) implies that A(s, A’) C A(s', A’). Then

s C s, and so s < s'. Thus in all cases, s < s’, and so M < M’. O

110 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

We now turn to some of the proofs that were previously deferred.
First, we note that the composition operation for structures is commu-
tative and associative.

Theorem 3.7 Let M, M' and M"” be structures. Then M || M’ is
isomorphic to M'||M. Also M||(M’'||M") is isomorphic to (M ||M")||M".

Proof For commutativity, it is easy to see that the map taking the
state (s, s’) of the former to (s/, s) of the latter preserves initial states,
transitions, labelings, and acceptance conditions, and hence is an iso-
morphism.

For associativity, let My = (M ||M")|| M" and My = M || (M'|| M").
Let ¢ be the map taking ((s,s’),s”) to (s,(s’.s"”)). In order to show
that this is a bijection, we need to prove that ((s,s’),s") is a valid state
of My iff (s,(s’,s")) is a valid state of M;. Assume ((s,s'),s") € Se.
To show (s,(s,s")) € S,, we must first prove that (s’,s”) is a state
of M’ || M”. If (s',s") is not a state of M’ || M”, then there must be
some state component @’ in A’ N A” such that L'(s',d") # L"(¢", d').
Now consider the labeling of (s,s’) in M || M’. Thls state must have
labeling L'(s’,a’) on the state compouent a’. Hence ((s,s’),s") could
not be a state of My, a contradiction.

We now know that (s’,s") is a state of M' || M". If (s,(s',s")) is
not in Sy, then there is some state component a such that the labeling
of s and the labeling of (s',s"”) disagree on this label. This state com-
ponent a must be in one of A’ or A”; let us suppose it is in A’. The
labeling of (s',s”) on a is then the same as the labeling of s’ on a. As
a result, we have L(s,a) # L'(s',a), and hence (s,s') is not a state of
M || M'. This means that ((s,s’),s”) is not a state of My, a contradic-
tion. Similarly, we obtain a contradiction if a is in A” instead of A’
Thus. we conclude that (s, (s’,s"”)) must indeed be a state of M,.

Now that we know @ is a bijection between the states of My and 1/,
it is easy to see that initial states, transitions, labelings, and acceptance
conditions are preserved. Thus, ¢ is in fact an isomorphism between
the structures. a

We also prove that the composition operation on structures cor-
responds to the composition operation on Moore machines (proposi-
tion 3.1).

3.8. TECHNICAL vETAILS 111

Proof Wc are given composable Moore machines M and M’, and
we ‘vant to know that struct(M }} M’) is isomorphic to struct(M) ||
struct(M'). Let M”" = M || M’, and define ¢ by:

(8.8, /") = ((s, f1U(L'(s") L AD)), (', [U (L(s) | AD))).

First note that (s, f"U(L'(s")| A/)) is a state of struct(M), and that its
labeling is compatible with the state (s, f*U(L(s)] A})) of struct(M’);
hence ¢ is a well-defined mapping between the two sets of states. It is
clearly an injection. Given a state ((s, f), (s, f')) of the composition of
the structures, if we let f” =f] A" = f' | AY, then we obtain a state
of struct(M”) mapping to ((s, f),(s’, f')); hence ¢ is a bijection.

¢ obviously preserves labelmgs and initial states, and the accep-
tance conditions of both structures are empty. If ((so,sg), fi) can tran-
sition to (s, »"')) i struct(M"), then R"((ao,s{) S (51, 81)). Tlns
implies R(so, f§ U (L'(sp) | Af).s1) and R'(sg, fi U (L(so) | A})ys
Now (sg, fo' U ("(s5) 1 A1) is a state of s!ruct(M) that can tranbl'
tion to (sy, f{'U ’(s1) 1 Ap)). and similarly (sg, fo U (L(s0) | A})) can
transition to S’ U (L(sy)] A})). Hence <p(((so,~), f§')) can transi-
tion to ¢(((a,,al) f,)). A similar argument shows that transitions in
struct(M) || struct(M') are also transitions in struct(M”). Thus, ¢ is
an isomorphism. O

We next return to the proofs of theorems 3.1 through 3.1, Recall
that the first of these states that < is the largest simulation relation
under the set inclusion ordering.

Proof First, we show that < is in fact a simulation relation. Suppose
s < §'. Hence, there exists some C that is a simulation relation and

for which s € s’. Since C is a simulation relation. L(s) | A" = L'(s').
Let 7 = sp8182... be a path in M starting at s = sy. Again, since
C is a simulation relation. there exists a path n’ = s)s}s, ... starting

at 8" = s such that for all i, s, € s!. Since there exists a simulation

refation () relating cach s nd sl, s, < & Hence X satisfies the
conditions for a simulation relation.

If C is any simulation relation for which s C &', then by definition

< s'. Hence C C <. O

112 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

To show that < is a preorder (theorem 3.2), we just argue that it is
transitive (reflexivity is obvious).

Proof Suppose M < M’ and M' < M”. Obviously, the condition
A C A” holds. Define C as the relational product of the two simulation

relations:
C={(ss")]I'[s<xs'As X"}

We first show that C is a simulation relation.

Suppose s C s”. Let s’ be a state such that s < s" and s’ < s”. Since
< is a simulation relation, L'(s’) | A” = L"(s"). Similarly, L(s) { A" =
L'(s"), so L(s) | A” = L"(s"). Let # = s¢s182... be a path in M
starting at s = sg. There must exist a path n' = sys}s) ... starting
at s’ = sy such that for all ¢, s; < s!. For this path, there must exist
a path 7" = sgs{sj... starting at s” = sg such that for all z, s < s{.
By definition, s; C s” for all z, i.e., # and 7" are paths from s and s”
related by ©. Thus, C is a simulation relation.

Now, if we can show that every initial state of M is related to a
corresponding initial state of M” by C, then we are done. Let s € /.
Since M < M, there is some s’ € [’ such that s < s’. Similarly, since
M’ < M"”, there is s” € I"” such that s’ < s”. By definition, s T s”. O

To prove that || respects <, we first prove the following lemma. It
tells us that paths in a composition correspond to paths in the compo-
nents.

Lemma 3.1 (path lemma) Let M"” = M || M’. The following condi-
tions are equivalent.

[7" = (50‘86)(3“3’1)(32,3'2) ...1sa path in M”.

2.7 = sp8;...and ' = sgs ... are paths in W and M’ respectively.
and (s;,s!) is a state of M" for all 1.

Proof If 7" = (so,50)(s1,51)(s2,83) ... is a path in M", then obviously
(s,,5]) 1s a state of M" for each :. By definition of composition. we must
also have R(s,, s41) and R'(s},s],,). Finally, suppose that (P, Q) is a
pair in the acceptance condition of M. Then ((P xS")NS", (Q xS)NS")
is a pair in the acceptance condition of M”. Since 7" is a path, either

3.8. TECHNICAL DETAILS 113

there is some ¢ such that (s;,s;) € (P x §')N S for all j > i, or there

are infinitely many such that (si,s}) € (@ x §')n §”. This implies

that either almost all of the s; are in P, or infinitely many of them are
in Q. Thus, 7 is a path, and a similar argument shows that 7’ is.

- Conversely, if r and n’ are paths in M and M’ respectively, then
we must have R(s;,si41) and R'(s{,s!,,). By definition of composi-
tion and the fact that (.s,,s’) is a state of M” for all i, we obtain
R"((si,8'),(Si41,5i4,)) for all i. Let ((P x S")n §”,(Q x §') N S") be
one of the pairs in the acceptance condition of M” (assume without
loss of generality that it derives from (P,Q) € F). Since 7 is a path
in M, either infinitely many s, are in @}, or almost all of them are in P.
This implies that either infinitely many (s;,s!) are in (Q x S) N S”,
or almost all of them are in (P x §’) N §”. Thus, each pair in the
acceptance condition of M" is satisfied, so 7" is a path of M". o

We now prove that composition respects simulation.

Proof Assume M < M’ Let My = M || M" and M, = M' || M".

Define C to be the relation
{((s,8"),(s",s")) | (5,8") € SyA(s',s")€SiAs 2}

Suppose (s,s") C (s',s"). Let a be a state component of M,. If a €
A then Lo((s,s"),a) = L(s,a) (since A D A’). But L,((s,s"),a) =
L'(s',a) = L(s,a) since s <X s’. If a € A", then Lo((s,s"),a) =
L"(s",a), and L{((s',s"),a) = L"(s",a) as well. In both cases, the
state labelings agree on a. Now let mg = (5o, s5)(s1.87)(s2,5%)... be a
path in My from (s,s”) = (s, 35). By the path lemma we can projcct
this to paths 7 from s in M and 7 from s” in M". Since s < s, there
is a path 7' = s{s(sy ... from s" = s¢ in M’ such that s; < s/ for each 1.
Again by the path lemma. the paths 7’ and 7" can be combined into
a path mp = (sg.89)(s7. 8755, 57) ... in My, By delinition, correspond-
ing states on m, and 7 are related by €, and hence C is a simulation
relation.

If (s,5") € Iy. then s € [and s"” € I". Since M < M’ there is some
s such that s < & and & € 'L For this &/, (s,5”) € (5.5"). Henee
(s.s") =< (s,s"), and every initial state of My has a corresponding
iitial state of M,. Thus, M, < M,. @)

114 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

The proof that M < M || M (theorem 3.4) is straightforward; we
just observe that { (s,(s,s))|s € S} is a simulation relation. We now
consider theorem 3.5 (the observation that composing M with T(B)
for B C A leads to a structure isomorphic to M).

Proof Let s € S. The only state of T(B) that has a compatible
labeling with s is L(s) | B. Hence the mapping ¢ defined by ¢(s) =
(s, L(s) | B) is a bijection between states of M and states of M || T(B).
Clearly ¢ preserves labelings. Since the all states of T(B) are initial
and all pairs of states have a transition between them, ¢ also preserves
initial states and transitions. Similarly, F' is mapped to a corresponding
acceptance condition in thr composition. O

The remaining task is to prove the correctness of the tableau con-
struction. Earlier we mentioned that the construction as given earlier
does not handle certain degenerate cases, so we first discuss these cases
and the changes that need to be made. Consider the formula A(false V
false) (AG false). If M is a structure where there is no initial state that
1s the start of a path, then M actually satisfies this formula. However.
if we construct the tableau according to the earlier definition, we find
that it has no initial states. This is because ®(A(false V false)) =
®(false) N ..., and ®(false) is the empty set. Since the tableau has no
initial states, it may not be able to simulate M. The solution to han-
dling cases such as this is to recognize that formulas such as A(y U)
and A(y V x) will be true for states that are the start of no path,
regardless of ¢ and x. To take this into account, we extend the set of
elementary formulas. When ¢ has a subformula involving U or V, we
add a special formula AX false to the clementary formulas of . Then.
we alter the mapping ® so that P(A (Y V x)) is

(P(x)N(P(L)UDAXA(V 1)) U P(AX false)
and ®(A(¢v U y)) is
(P()U ()N P(AX A(U x)))U ®(AX false).

With these changes, the construction is correct in all cases, as we now
show.

First, we -lemonstrate that if M < T (), then M | p. This will
be done in two steps:

3.8.

2

TECHNICAL DETAILS 115

. Prove that if M < M’ and if M’ satisfies a formula, then M

satisfies the formula as well.

. Prove that T(p) E ¢.

Then we will have M < T(¢), T(¢) E ¢, and hence M = .

Lemma 3.2 If M < M’ and ¢ is a formula with comp(y) C A’, then
M' k= ¢ implies M E ¢.

Proof The proof of this theorem is very similar in spirit to that of
theorem 2.2. Clearly it is enough to show that if s = ¢ and s X &',
then s = . We proceed by induction on the structure of formulas.

1.

3.

For atomic formulas and their negations, the result is obvious.
For conjunctions and disjunctions, it follows immediately from
the induction hypothesis.

Consider a formula of the form A(¢ Uy). Let 7 = $¢s152... be a
path from s = so; we want to show that this path satisfies ¢ U 9.
Since s < ', there is a path n’ = sgs}s)... from s’ = sy that
corresponds to 7. For each ¢, s; < s!. Hence by the induction
hypothesis, s! |= ¢ implies s; = @, and similarly for 3. If 7 does
not satisfy ¢ U, then this implies that 7’ does not satisfy o U ¢
either. Hence s’ [A(¢ U), a contradiction. Thus we conclude
that s & A(p U y).

The cases for AX ¢ and A(p V) are similar to the above. O

Lemma 3.3 Let s be a state of T (). For all subformnlas ¢ of o, if
s € ®(), then s |= . Hence T () E ¢.

Proof Let M = T(p) and s = (f, E); we proceed by induction on the
structure of the subformula.

1.

For true, we have that ®(true) contains every state, so s €
O(true) iff s = true.

116

o

CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

For a subformula of the form a = d, we have

®(a=d)={(f,E)| f(a)=4d}.

s E a=diff L(s,a) = d, and from the definition of T(p), we
have L((f, E),a) = f(a). Hence s € ®(a =d) iff s = a = d.

For the negation of an atomic formula, just note that the above
two cases are iff, and that ®(—-¢) = S — ®(s).

d(p Ax)=P(¥)NP(x). If s € (¥ A x), then by the induction
hypothesis, s = ¥ and s | x. Hence s = ¥ A x. Similarly, if
s€d(YVy),thens EyVx.

For subformulas of the form AX 1y, we have s € ®(AX y) iff
AX 1y € E. In other words, ® gives exactly those states la-
beled with the elementary subformula AX 3. Suppose s = sy €
®(AX). By definition of the tableau, if R(so,s;), then s, €
®(t). Applying the induction hypothesis, we find s, | ¥. Since
every successor of so must satisfy ¥, so E AX 1.

For a subformula of the form A(¥ V x), ®(A(¥ V x)) is
(@(x) N (®(P) U B(AX A(¥ V x)))) U (AX false).

If s € ®(AX false), then there are no paths starting at s. so it
satisfies A(¥ V x). Otherwise, s € ®(x), so by the induction
hypothesis, s = x. Also, s € ®(¥) U P(AXA(¥ V x)). If s €
®(1)), then s = ¥ by the induction hypothesis. If instead, s =
so € P(AX A(¥V x)), then by definitions of & and R, if R(so, s;).
then s; € ®(A(¥Vx)). Thus, in this case, all successors of s must
also be in P(A(y V x)). Let # = sos182... be a path starting
at s = sg. Suppose s, £ ¢ for all i < j. By the above, we must
have s, = x. Hence ¢ V y is true along the path, and since = was

arbitrary, s = A(y V x).

The argument for subformulas of the form A (U y) is similar to
that for A(v¥ V).

Now if s is an initial state of the tableau, then by definition s € ®().
Hence s | ¢, and so T (¢) E . a

3.8. TECHNICAL DETAILS 117

This concludes one direction of the proof. Now we want to prove
that if M’ | ¢, then M’ < T(p). This will be done by constructing an
explicit simulation relation between M’ and T(¢). The idea will be to
take a state s’ of M’, look at its labeling and the elementary formulas
that it satisfies, and use this to construct a unique state of 7 () that
can simulate s’. First, we define what will be the simulation relation
and prove a sort of analog to the converse of lemma 3.3.

Lemma 3.4 Let M = T(p), and let M’ be a structure with A’ 2 A.
Define C on S’ x S by s’ C (f, E) iff the following conditions hold:

L L)L A=/
2. For every AX ¢ € el(p), AXyp € Eiff ' E AX ¢

Then s’ C s implies that for every subformula or elementary formula 1
of p, s' = ¥ implies s € ®(9).

Proof By induction on the structure of formulas. In this proof, the
base cases are the atomic subformulas and the elementary subformulas.
In all cases, assume s’ C s = (f, E).

I. Tor true, s’ = true iff s € ®(true).

2. For a subformula a = d, we get that s’ a = d iff L'(s',a) = d
iff L({f,E),a)=diff f(a)=diff (f,E) € &(a = d).

3. For a negated atomic subformula, the result follows from the facts
that ®(—-1) = § — ®(+) and that the above two cases are iffs.

4. If s’ satisfies an elementary formula AX 1, then by definition
of C, AXyw€e F. But (f,F)c ¢(AXy)iff AXyp e FE.

5. For a subformula such as 1Ay, we get that s must satisfy i and \.
By the induction hypothesis, s € ®(y) and s € ®(x). lence
s € ®(p) N P(x), and s € (¢ A x). Subformulas of the form
@ V ¥ are handled in a similar mannet.

118 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART II

6. Subformulas of the form AX 1 are elementary formulas and were
dealt with above. Consider a subformula of the form A(yV x). If
s’ is not the start of some path, then s’ = AX false, so AX false €
E, and hence s € ®(A(¥ V x)). Assume s’ is the start of a
path. If s’ = A(y V x), then we first have that s’ x. By
the induction hypothesis, s € ®(x). Also, either s' | ¥, or
every successor of s’ must satisfy A(¥ V x). In the former case,
s € ®(¢). In the latter, s’ must satisfy AX A(¥ V x). This is an
elementary subformula, and hence by the induction hypothesis,
s € ®(AX A(¥ V x)). From these two cases we can conclude
s € O(P)UP(AX A(¥ V x)). All together, we have

s € ®(x) N (®(Y)US(AX A(P V X)),

and so s € ®(A(y¥ V x)).

Consider a subformula of the form A(y U x). If s’ is not the
start of some path, then as above we have s’ € ®(A(y U y)).
Otherwise, either s' | x, or s’ = ¥ and every successor of s’
satisfies A(¥Ux). In thelatter case s’ = AX A(yvUx). Applying
the induction hypothesis, we find

s € d(x)U(2(¥) N O(AX A(¥ U x))).
Hence s € ®(A(y U x)). 0
Now, using th.3 cesult, we have:
Lemma 3.5 The relation C given above is a simulation relation.

Proof Assume s' C s = (f, E). By definition, L'(s') | A = f = L(s).
Suppose now that 7' = sys|s) ... is a path from s’ = s in M’. We will
construct a path = from s = s in M that corresponds to n’. Assume
that we have constriucted states up to s; so far, and that we know
s; £ s, Let AX g, ..., AX -1 be the elefnent.ary formulas that
s; satisfies. Then s, must satisfy ¥y, ..., ¥m-1. Now observe that
cach state of M’ is related to a (unique) state of M by C. Let s
be the state related to s},, in this manner. By the previous lemma.
si+1 € (o), ..., Sip1 € ®(Ym-1). Since s C s; = (f;, E;), we know

3.8. TECHNICAL DETAILS 119

that the elementary formulas AX ; are the only elementary formulas
for which AXy; € E;. Then by the definition of T(y), R(si,i+1)-
Thus, we have found s;,, that extends the sequence and for which
si41 C siy1. Now we just have to show that this sequence satisfies the
acceptance conditions.

Assume that it does not. Then, looking at the acceptance con-
ditions for the tableau, we see that there must be some elementary
formula AX A(¥ U x) and some : such that for all j > 2:

s; ¢ (§— ®(AX A Ux)))U &(x).

Then s; = (f;, E;) is not in either part of the union. Now s; ¢ § ~
®(AX A(y U x)) implies that AX A(¥ U x) € E;. By the definition
of C, we find that s; = AX A(y U x). Further, since s; ¢ ®(x),
then by the previous lemma, we must have s’ [~ x. But then we have
si = AXA(9 U), and for all j > 1, s’ & x. This implies that =’

must not be a path, a contradiction. a

Putting the previous two lemmas together, we obtain the desired
result. If M’ | ¢, then by definition, every initial state s’ of M’
satisfies p. Recall the simulation relation C defined above pairs every
such s’ with a unique state s of the tableau. Now lemma 3.4 implies
that s is in ®(y), and hence by the definition of the tableau, s is an
initial state. Since C is a simulation relation, we conclude that s’ can
be simulated by an initial state of the tableau. Hence M <X T (p).

120 CHAPTER 3. COMPOSITIONAL VERIFICATION, PART 11

Chapter 4

Abstraction

So far, all of the methods we have for checking < (and k) are ei-
ther direct algorithms (e.g., model checking) or techniques based on
properties of <X and || (e.g., assume-guarantee proofs). In this section,
we consider methods based on abstraction. When performing abstrac-
tions, we lose information about the exact behavior of the system under
consideration. As a result, there will be some properties whose truth
cannot be determined by looking only at the abstracted system. It is
important that the verification methodology not lead to false positive
results. That is, if we find that some property is true of the abstracted
system, we must have a guarantece that the property really does hold
for the actual system. A verification methodology with this property
is said to be conservative. Note that we have no requirements abont
what happens in the actual system if the property is not true in the
abstracted system.

Our main goal is to be able to verify efficiently systems that ma-
nipulate data in nontrivial ways. For such systems, we will want to
collapse the possible data values down to a small set of abstract ele-
ments. There are two main recasons why abstraction is uscful for veri-
fying systems that manipulate data. First, the properties that we are
interested in proving can often be expressed in terms of abstract values,
i.e., we can write accurate specifications at the abstract level. Second,
real systems generally manipulate data in well-structured ways. As a
result, we can tell something about the abstract value representing the
result of an operation based on the abstract values of the inputs. This

121

122 CHAPTER 4. ABSTRACTION

is important if we are going to make a model of our system that is not
too conservative.

4.1 Conservative Connections

When using abstraction for verification, we will be working at two lev-
els: a concrete one and an abstract one. Structures at the abstract
level will be viewed as approximations to structures at the concrete
level. Ip order to tie the levels together, we introduce a map that takes
a structure at the concrete level and produces an abstract-level view of
1it. Another map will take a structure at the abstract level and give us
a concrete-level structure that represents the “most general” behavior
corresponding to the abstract structure. The goal of using abstraction
is to check a specification at the abstract level, and then to infer a simn-
ilar relationship at the concrete level. Thus, we are led to the following
definition.

Definition 4.1 Let ¥, be a function mapping structures over .1 to
structures over A, and let ¥, be a function mapping structures over .1
to structures over A. We say that LM V¥,) is a conservative connec tion
(between structures over A and A) when for all structures M and M
(over A and A respectively), W, (M) < M implies M < W (\I)

The notion above is a kind of hybrid of the conservative approxi-
mation of Burch [21] and the Galois connections used by Bensalem o/
al. [6), and also has some relation to Kurshan's automata homomor-
phisms [62]. (Actually, we can impose a lattice structure on structures:
meet is composition, join is a kind of disjoint union, and top and bot-
tom are the structures T and L of example 3.8. Then the definition
above can actually be viewed as a Galois connection between the lattice
of structures over A and the lattice of structures over A.)

The motivation behind using a conservative connection is that ver-
ifying W,(M) < M will be easier than verifying M < ¥ (M) directly.
The price we pay for the simplification is_that we may obtain false
negative results: it may be that M < W ()) while W, (M) £ M. The
condition in the definition of a conservative connection can be expresse +d
pictorially as in figure 4.1.

4.1. CONSERVATIVE CONNECTIONS 123

\yu(M) j lﬁ
) :
v, implies v,
Y Y
M < W, (M)

Figure 4.1: A conservative connection

Note that, in contrast to the conservative approximations of Burch,
the mapping W, has abstract structures as its domain rather than its
range. This is for two reasons: first, it is often most convenient to give
the specification at an abstract level; ¥, tells what the specification
means at the level of the implementation. Second, in our framework it
will generally mathematically cleaner to give a single “most general”
structure represented by a specification than to give the specification
corresponding to an arbitrary structvre. An implementation might
actually provide a kind of lower bound mapping from structures over A
to structures over A. Applying this mapping to M and then applying
W, to the result should give something smaller than M nnder <. Also,
an implementation may not actually provide a way to compute W¥,,; if
instead it produces something larger (under <), this is still sufficient,
for verification purposes.

Example 4.1 Let A = A, and let id be the identity mapping between
structures over A. Then (id, id) is a conservative connection. O

Recall that we can have M < M’ when A’ C A. We could have ac-
tually defined < so that it only held between structures with the same
sets of visible state components. Then we would use a conservative
connection to hide state components. As another example of a con-
servative connection, we now consider how this would be done. First
‘though, we will need a hiding operation for structures. We choose one

124 CHAPTER 4. ABSTRACTION

that is analogous to our hiding operation for Moore machines (defini-
tion 2.14).

Definition 4.2 Let M be a structure arldA/i be a set of state com-
ponents. The result of restricting M to A (denoted M | A) is the
structure M defined by:

1. $S=35.
2. 1=1.
3. R=R

1. L is defined by L(s) = L(s)] A.

Example 4.2 Let A C A, and let ¥,(M) = M | A Also. take
\ll(W) =M Il T(A - A). Then (W,, W) is a conservative connec-
tion. To see this, assume ¥, (M) < M. We note that M X W, (M/). su
M=<M. Composing both sides with T(A — A) gives

M| T(A=A)y < M| T(A-A).

Now by theorem 3.5, M || T(A - /i)j;s' isomorphic to M. Also. the
right side of the above relation is W;(M), so we have M < W (M), as
required. =]

Example 4.3 The composition of conservative connections is also a
conservative connection. Suppose that (V,,¥;) is a conservative con-
nection between structures over A and A and (W, W]) is a conservative

connection between structures over A and . Then (W) oW, ¥ 0 W)
is a conservative connection hetween A and A. a

Example 4.4 Suppose (V,, ¥;) is a conservative connection between
structures over A and A 1f W) and W] are functions with W/ (M) <
Y, (M) and W;(M) < ¥ (M) then (W, ¥]) is also a conservative con-

nection. a

4.1. CONSERVATIVE CONNECTIONS 125

The mappings in conservative connections often have other nice
properties. First, they are commonly monotonic with respect to the
preorder <. So, for example, applying ¥, to M and to M’ with M < M’
gives W,(M) < W,(M’'). Second, distributing the mapping ¥, over a
composition gives something larger under <. This latter property is es-
pecially important: in order to use conservative connections effectively,
we usually do not want to deal explicitly with M when producing the
abstract version of M. The property says that we can approximate the
parts of a composition Lefore composing and still remain conservative.

Example 4.5 Recall the earlier example of collapsing states with iden-
tical labelings (example 3.10). (collapse, collapse) is a conservative con-
nection between structures over A and A. Also, collapse is monotonic,
and it can be distributed over compositions (we prove this later).
Note that applying collapse to a structure in which each state has
a unique labeling function gives a structure isomorphic to the original
one. When ¥ (W,(M)) < M, then we say that the conservative connec-
tion M is exact for M. Thus, (collapse, collapse) is exact for structures
in which each state has a unique labeling function. o

We now consider conservative approximations that abstract the vis-
ible state components of a structure. The abstraction will be given in
terms of a set of mappings on state component values. That is, for each
concrete state component a, we will have a corresponding abstract state
component a. Then we will provide a mapping between D, and D5 that
will be used to give an abstract-level view of the value of a. If we simply
apply this mapping to the state labelings of a concrete-level structure,
that will give us the desired abstract-level structure. This is the analog
of an automata homomorphism induced by a boolcan algebra homo-
morphism in the work of Kurshan [62].

Definition 4.3 Let A = {ag,...,a,_1}, A= {@o,....dn-1}. and sup-
pose ho, ..., ha_y are surjections with hy: Do, — Dy Let b be the
function mapping labeling functions over A to labeling functions over A
defined by
(R(fD(@) = hi(f(a))).
Let M be a structure over A. Define abs,(M) (with respect to h)
to be the following structure M:

126 CHAPTER 4. ABSTRACTION

1.S=8§

2. [=1

3. R=R

4. L(s) = h(L(s)).
5. F=F.

This gives us a mapping from concrete-level structures to abstract-
level structures. Now we want to produce a conservative connection,
and so far we have the situation shown in figure 4.2. We need to define
abs; taking us from the abstract level to the concrete level.

—

abs,(M) =< M
A :
abs, implies ?
¥ Y
M = ?

Figure 4.2: Situation alter defining abs,

Suppose that M is a concrete-level structure and that (sy.sy) is a
transition of M. Also suppose that there is one visible state compo-
nent a that can take on the values {0.1,2,3}. We will assume that the
labeling for sy has @ = 0 and the labeling for s; has @ = 1. Let A map
0 and 2 to even and map | and 3 to odd. When we apply abs, to M,
we get states sy and s; with labelings even and odd, respectively, and
a transition between them. Now suppose that we have a structure M
that can simulate abs,(M). There should be some transition (3p, ;)
that can simulate the (s, s1) transition of abs,(M). This implies that
L(59) should be cven and [A,(ET) should be odd. Now we want to deline a
mapping abs; from abstract to concrete structures. Because simulation

4.1. CONSERVATIVE CONNECTIONS 127

at the abstract level should imply simulation at the concrete level, we
will want abs,(ﬁ) to be able to simulate M. It is natural to use the
(S0,351) transition to construct a transition of abs;(M) that can simulate
the (so,s)) transition of M. However, since h is generally not a bijec-
tion, given just the labelings of s and 37, we cannot tell exactly what
labelings s and s, have. Thus, we will expand each state of M into a
class of sta: s, one for each compatible labeling. This will give us the
state space of abs;(M) In this examy.le, we expand Sp into two states,
(50,0) and (5g,2) (where 0 and 2 denote the labeling functions mapping
a to 0 and 2). Similarly, 5] expands into (57, 1) and (57, 3). Since s has
the labeling a = 0, we choose (5,0) to simulate it, and likewise (3, 1)
will simulate s,. Now we just include all transitions from states in the
class for 5p to states in the class for 57. The ((50,0),(51,1)) transition
will simulate the (so,s;) transition of M. We now define abs; formally.

Definition 4.4 Let M be a structure over A. Define absl([ﬁ) {with
respect to h) to be the structure M given by:

. S={(5&f)|5€ SAf € labelings(A) A L(5) = h(f) }.
2. I={(5f)|sel}).

3. RS fo). (5. /1)) iff R(S5,).

1L((5.) = /.

5. Each (P.Q) € F is transformed into a corresponding pair

in F.

Example 4.6 Figure 4.3 shows the structure M corresponding to a
traffic light. The structure has one state component ¢ (for “color™)
which can take on one of the values {red, yellow, green}. The labels in
the figure indicate the value of ¢ in the different states. We abbreviate
red by r, yeliow by y, and green by ¢ in the figure. The structure
also has an acceptance condition requiring that we not loop {orever in
the state where ¢ = red. The abstract state component corresponding

123 CHAPTER 4. ABSTRACTION

GF(c # red)
Figure 4.3: A structure representing a traffic light

to ¢ will be denoted by ¢. It will range over the values {stop, go}, and
we will use the abstraction defined by A(red) = stop and h(yellow) =
h{green) = go. With this mapping, abs, (M) i1s shown in figure 4.-1. In
the figure, s indicates stop and g denotes go. The acceptance condition
carries over as well: infinitely often, we must visit one of the bottom
two states (where ¢ = go). On the other hand, if we let M be the
structure in figure 4.4, then we can also apply abs; to M. This process
is shown in figure 4.5. In the figure, the dashed arrows indicate the
mapping between abstract-level states and concrete-level states. The
lower two abstract states each map to a pair of concrete states. Note
that the resulting structure abs;(abs,(M)) can simulate M as implied
by the definition of a conservative connection. a

Theorem 4.1 (abs,, abs;) is a conservative connection.

The proofl of this is deferred; here, we just give the intuition. Sup-
pose we know that abs, (M) < M. Given a state s of M, we lift it to
the abstract level using abs,. Now at this level, s can be simulated by

4.1. CONSERVATIVE CONNECTIONS 129

9
()

GF(c¢ # stop)
Figure 4.4: The result of applying abs, to the structure in figure 4.3

some state 5 of M. However, each state 5 of M can be viewed as a set
of states at the concrete level, one for each possible concrete labeling
function f satisfying L(3) = h(f). Thus, abs;(;ﬁ) will have a state
(5. L(s)), and this state will be able to simulate s.

It is easy to see that abs, and abs; are both monotonic with respect
to <. They can also be pushed over composition. For abs,, every
state of abs,(M || M’) is also a state (s,s") of M || M'. This means that
s and s’ are states in abs,(M) and abs,(M'), respectively, and they have
compatible labelings. Hence (s, s) is also a state of abs, (M }{[abs, (M},
and this state can simulate (s,s") in abs, (M || M’). For abs;, a state
(s, ;') in ‘WJI M gives rise to states ((?,/.s:’),f) in ;11)5&(7 | /\T’) Now
(5, f) and (&', f) must be states of abs;(M) and abs;(M’) respectively,
and so ((s, f), (s', f)) is a state of their composition. This state can be
seen to simulate (3, s).

Note abs, (M) is essentially like M. but with the labeling function
changed. In order to reduce the complexity of verification, we will
generally apply collapse immediately after abs,. However, constructing

130 CHAPTER 4. ABSTRACTION

GF(c # stop) GF(c # red)

Figure 4.5: The result of applying abs; to the structure in figure 4.4

4.2, COMPUTING ABSTRACTIONS 131

M in order to compute abs,(M) and then collapse(abs,(M)) is often
not practical. We address this problem in the next section.

4.2 Computing Abstractions

We use two methods to avoid having to examine M. The first is to use
the fact that M is often given as a composition. By pushing the approx-
imation computation over the composition, we do not have to construct
the product state space of the parts. The other technique relies on the
fact that we usually have an implicit representation for M. For exam-
ple, suppose M is given by a program in a finite-state language. By
using a nonstandard semantics for the language, we can directly com-
pile an approximation to collapse(abs,(M)). This approach is similar
to the use of abstract interpretation in program analysis [40, 41] and
was first applied to verification by Clarke, Grumberg, and Long [30].
We now illustrate the details of this process using a simple finite state
language which we call £o. Programs in £y can be used to describe
structures, but we emphasize that £, is intended only for illustration
purposes: it does not contain facilities that would be needed in a prac-
tical language. After discussing the syntax and intuitive meanings of
L, programs, we will give two semantics: a standard one., and one that
can be used to produce an approximation to the abstracted structure.

Definition 4.5 The textus! classes for the language Ly are defined as
follows:

i. Variables: vg, vy, ...
2. Functions and constants: fo, f1, ...

3. Expressions: an expression e is cither a variable reference »; or a
function invocation fi(eg,...,eq1).

4. Statements: a statement s has one of the following forms:

(a) an assignment statement v; 1= e;

(b) a conditionai statement eg — Sg | ... | €y = Sp_1; OF

132 CHAPTER 4. ABSTRACTION

(c) a sequential composition sg;...;8n_1; OF

(d) a parallel composition sg || ... || Sn-1.

For conditionals, we require that the union of the guards be to-
tal (their disjunction must be a tautology), so one alternative
is always selected. In the composition, we require that different
s; do not change the same variable, as this may lead to con-
flicts. To avoid this, we define a function changes that gives the
set of variables changed by a statement. Then we must have
changes(s;) N changes(s;) = @ for i # j. Formally, changes is
definec as follows:

(a) changes(v; :=e) = {v;}.
(b) changes(eo — S0 | ... | €n—1 = Sn=1) = Uy changes(s;).
(c) changes(so;...;sn-1) = U'Zy changes(s;).

(d) changes(sq || ...l sn_t) = Uy changes(s;)

Both of these restrictions can be eliminated, but since Ly is only
being used for illustrative purposes, we choose to kecep things
simple.

(1)

Programs: a program is a pair of statements sy s, The
statement Si; i1s used to set up the initial states from which the
program begins execution. At that point, we proceed by exccuting
Sirans repeatedly. (Thus the notation: the w is intended to suggest
infinite execution of Sia,s following one execution of sii.) To
derive the actual set of initial states, we execute s, starting
from an arbitrary state; any state that is reached as a result is an
initial state.

The state space of an Lo program will be a set of tuples of valuations
over a collection A = {ag, ay,as, ...} of state components. The variable
v; within a program is used to refer to the value of component a; within
a state, or to specify how the value of that component changes. Note
that we have not specified the operators that are allowed in expressions
in an Lo program, but the exact ones are not important.

4.2. COMPUTING ABSTRACTIONS 133

Before giving a formal semantics for Lo, we start with an intuitive
description. Expressions will have their usual meanings. An assignment
statement v; := e sets the value of the component a; to the result of
evaluating e. To execute a conditional eg — 3¢ | ... | €nc1 = Sp=1, We
evaluate all of the expressions e;, each of which should yield a boolean
value. Next, we choose an ¢ for which e; is true (there must be at least
one), and then execute the corresponding s;. Multiple e; being true
gives rise to nondeterminism. For a sequential composition sg;. . . ; Sn-1,
we execute the s, in order. s;; is executed starting from the state where
s; finished. To execute the parallel composition sg || ... || Sn-1, we first
execute each s; starting from the current state. Then, we merge the
result of each of these executions to obtain the result of executing the
parallel composition. The merging is done as follows: if s; sets the
value of state component a; to the value of e, then the value of a; after
execution of the parallel composition will be the value of e. In order to
ensure that different s; do not set the same a; to conflicting values, we
require that different s, cannot assign to the same variable. This is the
reason for introducing the function changes above.

Example 4.7 Consider the Collatz problem (the “3z + 1 problem”).
You are given a natural number z and asked to apply the following
procedure. If z is odd, multiply it by three and add one; if it is even,
divide it by two. If this procedure is repeated continually, will you al-
ways reach z = 17 (The answer to this question is currently unknown.)
An Lo program that executes steps of the 3z + 1 problem for the initial
value 42 is shown in figure 4.6. We will come back to this program
when we consider the process of direct abstract-level compilation. O

We now proceed to give the formal semantics of £o. Since we are
interested in producing initial state and transition relations, a relational
semantics is most natural. For simplicity, we will assume that the set of
state components (and corresponding variables) is fixed, and that the
domains of values for these components is likewise fixed. In a practical
language of course, these wouid be specified within the program. We
also ignore type checking issues: a given state component can only
hold certain values, and assignments to the corresponding variable must
respect this. In order to give semantics for conditionals, we need to be

134 CHAPTER 4. ABSTRACTION

1 INITIAL

2 x := 42

3 TRANSITIONS

4 even?(x) -> x := x/2

5 | 0odd?(x) =-> x := x+x+x;
6 X = x+]

Figure 4.6: Example £y program

able to specify that an expression evaluates to true. For simplicity, we
assume that true is a special data value, and that it is left fixed by the
abstraction mapping.

The semantics will be in terms of a meaning function, denoted as [-],
which we take as assigning meanings to expressions, statements, and
programs. The meaning of an expression will be a function that takes a
state of the system and returns the value of that expression when evalu-
ated at that state. Following standard notational conventions, we write
this in curried form: [e]Jo means take e, find its meaning (a function
from states to values), and apply this function to the state o. States
of the system are viewed as valuations, 1.e., mappings from variables to
values. The meaning of a statement is a relation between states that is
true iff executing the statement starting in the first state can result in
the second state. If the statement s can take us from state o to state o’,
we write [s](o, o). The meaning of a program will be a structure. The
semantics are parameterized by concrete functions that correspond to
the operators appearing in the expressions.

Definition 4.6 The standard semantics for Ly (over concrete func-
tiors fo, fi, ...) is defined as follows:

1. Expressions:

(a) The meaning of a variable in a particular state is just the
value of the variable in the state:

[vi}o = o(v).

4.2. COMPUTING ABSTRACTIONS 135

(b)

The meaning of a function invocation fi(eg,...,€en-1) is the
result of first evaluating the meaning of each e, {in o) and
then applying f; to the result:

[fi(e(h BN} en—l)]a = fi([ﬁola, ey [C"_lnd).

2. Statements:

(a)

An assignment statement v; = e takes us between the states
o and o' when ¢’ is obtained from o by first evaluating the
expression e in the state o and then setting the value of v,
in o' to the result: [v; := €](a,0’) iff o' = o[[e]o/vi].

For a conditional, we evaluate all of the guards in the state o,
choose one which is true, and then execute the corresponding
statement to take us between o and o’':

[eo—s0]-..|€n-1 = sn-1](o,0)
ff there exists ¢ such that
([eiJo = true) A [s;](o, o).

For a sequential composition, we just execute each statement
in turn.

[s0;.-.;8n-1](o,0")
iff there exists oy, ..., o, such that og = 7, 7,, = ¢’, and for
all 0 <@ < n, [s:})(o:,0i41)-
In a parallel composition, recall that we have a syntactic
restriction that two different statements in the composition
cannot change the same variable. Thus, to get the effect
of parallel execution, we just execute each statement in the
composition starting from the state . Then we fold all
of the changes that the statements make together to get o’
Because of the above restriction, we cannot run into conflicts
when doing the merging.

fsoll--. |l sa-1)(0,0")

iff there exists oo, ..., 0,1 such that [s;](e,0;) and:

136 CHAPTER 4. ABSTRACTION

i. o'(vj) = oi(v;) when there exists a (unique) ¢ such that
v; € changes(s;);

ii. o’(v;) = o(v;) otherwise.

3. Programs: The meaning of a program sin;; Spran, 1S the following
structure.

(a) S is the set of all valuations o.

(b) For the initial states, we execute s, from an arbitrary state.
Thus, o’ € [iff there exists o such that [sini](o, o).

(c) The possible transitions are those that are allowed by $irans:
R = ﬂstrms]-

(d) The labeling of a state is just given by the state: L(o,a;) =
a(v,-).

(e) F=0.

We now turn to the problem of compiling an £y program in order
to obtain an approximation to the actual meaning of the program. We
will assume that the value of the variable v; is to be abstracted by the
mapping hk;, i.e., h; is a mapping from D,, (the domain for v;) to D3
(the abstract domain for this same variable). Now we want to work di-
rectly over abstract domain elements in order to avoid having to apply
an abstraction such as abs, alter the compilation process. By working
in the abstract domain, we generally lose information. As a result, we
often cannot tell exactly what the value of an expression should be.
For example, suppose the concrete domain that we are considering is
the natural numbers, and say that the subtraction m — n is defined to
produce 0 when m < n. Also assume that the abstract value corre-
sponding to a number is equal to the value of number modulo 5. Given
just the values of m and n modulo 5, we cannot tell exactly what the
value of m — n modulo 5 will be. On the other hand, we do have some
information: it must be either 0 (if m < n) or m — n modulo 5 (if
m > n). We will capture this uncertainty by using a relation to rep-
resent the value of an erpression. When the relation corresponding to
an expression is true for some abstract domain element, it intuitively
indicates that the expression may evaluate to that abstract value. Of

4.2. COMPUTING ABSTRACTIONS 137

course, this uncertainty also appears at the level of the primitive op-
erators that appear in expressions, and hence the semantics now will
depend on a set of relations rather than on a set of functions as above.
There will be a relation for each function, and we will denote the re-
lation corresponding to f; by P;. While we want P;, to overestimate
the possible values of f;, we do not want to be too conservative. For
example, while having P;, be the universal relation (i.e., saying that f;
could produce any value) would give a valid approximation, we would
not be able to prove anything interesting by examining the abstract
structure. Thus, we want to include only those values that are strictly
necessary. This suggests the following: we take P].(do, . d,._l,d) iff

Edo...dn_,d[n/-\lh(d.-)=J.~/\h(d) dA fildo,... duy) = d).

1=0

(Here, we are abusing notation and writing A(d) for d € D,, to denote
hi(d).) That is, Py, is true for do, ceey d:,, d when: given arguments
whose abstract values are d(), e d,,_l, fi could produce a resuli whose
abstract value is d. Now we define the approximating semantics for Lo
programs. Recall that we are now going to be compiling entirely at the
abstract level.

Definition 4.7 The upper approzimating semantics for Lo (over the
relations Py, Py, ...) is denoted by []. and is defined as follows:

. Expressions: Recall that the meaning of an expression will be a
relation that is true for an abstract value d when it appears that
the actual value d could be such that h(d) = d.

(a) The meaning of a variable reference v; is a relation that
is true for d when the actual value of v; could map to d.
However, the abstract value of v, is given by the state o.

Thus, (fv.]ud)(d iff U(v,)—(l

(b) For a function application fi(eg,...,e,_;), we want to eval-
uate the arguments and then apply f;. When we evaluate
the argument e;, we get the relation [e;}).&, specifying the
possible abstract values of e;. Now Py, tells us the possi-
ble abstract values of f; given a sequence of abstract inputs.

138 CHAPTER 4. ABSTRACTION

Thus, we simply look at all the possible sequences of abstract
inputs and check Py, for each -equence.

-~

([fileo, - - - en-1)}u7)(d)
iff

3dy . .. dpoy [([€0du®)(do) A -+ A ([en-1]u8)(dn1)
A Py (dg, ... dnoy,d)].

2. Statements:

(a) For an assignment v; := ¢, we again just want to replace
the next state value of v; with the value of e. The possible
values of e are given by the relation [€],, so we just allow

-~

o'(v;) to be any value satisfying this relation.
[vi := €]u(a,07)

iff there exists d such that ([e]u&)((I) (d is a possible value
of e) and ¢’ = rr[(i/v,»]_

(b) For a conditional, we want to evaluate each guard and then
choose one which is true. However, we cannot necessarily tell
the exact value of each guard. In order to simulate what the
actual program might do. we allow execution of a statement
s; whenever the corresponding guard e; could be true.

leo—s0|--.] €nmy — sn_.ll,,(&d')

iff there exists ¢ such that ([e;].o)(true) (e, could be true)
and [s:]u(5,0").

(c) [-]. for sequential compositions and parallel compositions
is defined in the same manner as [-] back in definition 1.6,
(This is because these operations do not directly involve eval-
uating expressions.)

3. Prugrims: The program sj; 53, again evaluates to a struc-
ture M, but this time it is over abstract state components. Other

than this, the definition is analogous to that for [sinic; ${ansl-

4.2. COMPUTING ABSTRACTIONS 139

(a) S is the set of all valuations &.

(b) o e I iff there exists & such that [sinic}u(o)
(¢) R A = [>eeans]u-

(d) L{o,a;) = a(v).

(e)

Now in order to be able to use our approximating semantics for
verification purposes, we need that absy([Sinit; Sirans]) X [Sinics Stans)u-
We actually have the following stronger result, whose proof is deferred.

Theorem 4.2 Let siqi; 8., be an Ly program. Then
collapse(abs,([sinic; Strans])) X [Sinit; Sirans]u-
Since M X collapse(M) for all structures M, this implies
absy([sinit: Sirans]) = [Sinit; Strans)u-

Example 4.8 Consider the program of example 4.7. Suppose that we
abstract r by mapping even natural numbers to even and odd ones
to odd. First, let us compute the P;, used in the program. We have
predicates odd? and even? mapping natural numbers to booleans, and
we have addition and integer division. Then, as expected. we get

Poiar = {(odd, true), (even, false)}

and

P.yen> = {(o0dd, false), (even, true)}.

Addition also behaves nicely:

P, = {(odd, odd, even), (even, even, even),

(odd, even, odd), (cven, odd, odd)}.

With division, however, we find that P, is the universal relation. (We
also have the obvious relations representing the constants 1 and 2 that
are used in the program.) Now we begin assigning meaning to the
pieces of the program.

140 CHAPTER 4. ABSTRACTION

Consider the expression z+ 1. What is the meaning that the approx-
imating semantics assigns to this expression? Recall that [z + 1].5 is
supposed to be a relation representing possible abstract values of z + |
given that r has the abstract value o(z). Let us consider the ab-
stract value odd and deterrnine when it can be in [z + 1].0. We
have that odd is a possible value iff there exist do and d, (chosen
from {even, odd}) such that P, (do,d;, 0dd) and ([z]ufi)((j(\)) and P,(d,).
Since P, is only true for the abstract valug\odd, we must have 3: = odd.
Then Py(dy, odd, odd) 1s ouly true for dy = even. Hence we must
have ([z].o)(even), i.e., £ must have the abstract value even. and so
a(r) = even. In summary, we find that = must have the abstract value
even for r + | to evaluate to the abstract value odd. Similarly. r must
be odd for z + 1 to give even. Using the above, we can derive the
relation [z := r + 1],. Recall that this relation tells us the possinle
abstract state changes that can occur when we execute r :=r + 1. If
we identify a valuation by the value it assigns to r, then

[:= 2+ 1]. = {(odd, even), (even, odd)}.
For z := z + r + z, we obtain
[e:=z+z+z). = {(0dd, 0dd), (even, cven)}.
Taking the relational product:
[c:=z+r+zir:=1+ 1], = {{odd,even), (cven. odd)}.

For r := r/2, we get the universal relation. Evaluating the conditional,
we obtain the final transition relation

{{odd, even),{(even, even),(cven, odd)}.
From this abstract compilation, we can tell that the system would sat-

isfy the property: “if z is odd, then one step later, &£ will be even™.
a

[n implementing the above ideas, the main difficulty is in produc-
ing the P;. When performing a verification, the user must have a lot

1.3. EXAMPLE ABSTRACTIONS 141

of flexibility in constructing abstractions. Contrast this with the situa-
tion where abstract interpretation is being used by a compiler to gather
data-flow information for optimization purposes. Here, if the abstrac-
tion is not precise enough to prove that a particular optimization is safe,
then the program will simply run a bit slower. In verification, when the
user decides that the current abstraction is not precise enough to prove
some property, she must have the flexibility to modify the abstraction
in order to try to capture the information required. Obviously, making
the user provide new Py, each time the abstraction changes is extremely
tedious and error-prone. Also, we have found that we often need to
makc up new abstractions during the course of a verification. Hence,
having a fixed “catalog” of allowed abstractions is not an option. The
alternative is to have the user provide only the abstraction mapping
(the k;) for each variable and to let the compiler produce the Py, as
needed. This requires the ability to evaluate the relational products

n—~1
Idy...dyd[\ Aldi) =di ANR(d) =dA fildo,... duy) =d]
1=0
automatically. In a BDD-based compiler, this is feasible: BDDs es-
sentially give us a way for manipulating sets, relations, and functions
over finite domains. This is the approach we used in developing the
prototype compiler described in the next section.

4.3 Example Abstractions

In this section, we discuss some abstractions which have proved useful
in practice. Each is illustrated with a small example. Thece examples
are drawn from the paper by Clarke, Grumberg, and Long [30]. The
examples will be given using a finite state langnage that is suitable for
describing Moore machines. The main features of this language are:

1. It is procedural and contains a variety of structured programming
constructs, such as while loops. Non-recursive procedures are
also available.

-

It is finite state. The user must specify a fixed number of bits for
each input and output in a program.

142 CHAPTER 4. ABSTRACTION

3. In keeping with the Moore machine semantics, the model of com-
putation is a synchronous one. At the start of each time step,
inputs to the program are obtained from the environment. All
computation in a program is viewed as instantaneous (i.e., occur-
ring in zero time). There is one special statement, wait, which is
used to indicate the passage of time. When a wait statement is
encountered, any changes to the program’s outputs become visi-
ble to the environment, and a new time step is initiated. Thus,
computation proceeds as follows: obtain inputs, compute (in zero
time) until a wait is encountered, make output changes visible,
obtain new inputs, etc. The wait statements indicate the control
points in the program.

Aside from the wait statement, most of the language features used in
the examples are self-explanatory. Additional features will be described
in more detail as needed.

We implemented a prototype compiler to take programs written in
the language and compile them dcwn into Moore machines. During
the compilation process, BDDs for the initial states and transitions of
the program are produced by symbolic execution. When a program is
compiled, the user may also specify abstractions for some of the inputs
or outputs. These abstractions are given by simply specifying the func-
tions h;. By using the techniques described previously, the compiler
directly generates an abstract Moore machine. There are a number of
abstractions built into the compiler, some of which are described be-
low. In addition, the user may define new abstractions by supplying
procedures to build the BDDs representing the abstraction function.
Abstract versions of the language primitives are computed automat-
ically by the compiler as needed during the compilation. Since the
language s much more complex than Loy, we will not give its formal
semantics or the approximating semantics here.

Figure 4.7 is a small example program, a settable countdown timer.
The timer has two inputs, set and start, which are one and eight bits
wide respectively. There are also two outputs: count, which is eight
bits wide and is initially zero; and alarm, which is one bit and initially
one. At each time step, the operation of the counter is as follows. If
sel is one, then the counter is set to the value of start. Otherwise, if

4.3. EXAMPLE ABSTRACTIONS 143

the counter is not zero, it is decremented. The alarm output is set to
one when count is zero, and to zero if count is nonzero.

1 input set[1];
2 input start(8];

3 output count([8] := 0;
4 output alarm(1] := 1
5 loop

6 if set = 1

7 count := start

8 else if count > 0
9 count := count-i
10 endif;

11 if count = 0

12 alarm := 1

13 else

14 alarm := 0

15 endif;

16 wait

17 endloop

Figure 4.7: An example program

4.3.1 Congruence modulo an integer

For verifying programs involving arithmetic operations, a useful ab-
straction is congruence modulo a specified integer m:

h(z) =1 mod m.
This abstraction is motivated by the following properties of arithmetic
modulo m.

((zmod m) 4+ (j mod m))modm=1i+4+; (mod m)
({zmod m) —(j mod m))modm=1:—-3 (mod m)

((z mod m)(y mod m)) mod m =i5 (mod m)

144 CHAPTER 4. ABSTRACTION

In other words, we can determine the value modulo m of an expression
involving addition, subtraction and multiplication by working with the
values modulo m of the subexpressions.

The abstraction may also be used to verify more complex relation-
ships by applying the following result from elementary number theory.

Theorem 4.3 (Chinese remainder theorem) Let m, m,, ..., m,
be positive integers which are pairwise relatively prime. Define m =
mym;,...my, and let b, 1;, 73, .. ., i, be integers. Then there is a unique
integer ¢ such that

b<i<b+m and t=1; (mod m;) for 1 <5 <n.

Suppose that we are able to verify that at a certain point, the value of
the nonnegative integer variable z is equal to ¢:; modulo m; for each of
the relatively prime integers m,, my, ..., m,. Further, suppose that
the value of z is constrained to be less than mym,...m, (e.g., z is
represented using k bits and 2% < mym,...m,). Then using the above
result, we can uniquely determine the value of z at that point from the
i

We illustrate this abstraction using a 16 bit by 16 bit unsigned
multiplier (see figure 4.8). The program has inputs req, in/ and in2.
The last two inputs provide the factors to operate on, and the first is
a request signal which starts the multiplication. Some number of time
units later, the output ack will be sct to true. At that point, either
output gives the 16 bit result of the multiplication, or overflow is one
if the multiplication overflowed. The multiplier then waits for req to
hecome zero before starting another cycle. The multiplication itself is
done with a series of shift-and-add steps. At each step, the low order
bit of the first factor is examined; if it is one, then the second factor
is added to the accumulating result. The first factor is then shifted
right and the result is shifted left in preparation for the next step. One
feature of the language which the program uses is the ability to extend
an operand to a specified number of bits (lines 21 and 27), indicated
using the colon operator. This facility is used to extend output and
factor? when adding and shifting so that overflow can be detected.
The statement

(overflow, output) := (output:17)+factor2

4.3. EXAMPLE ABSTRACTIONS 145

sets output to the 16 bit sum of output and factor? and overflow to
the carry from this sum. Also, << is used to indicate left shift by the
indicated number of bits, and right shifts are indicated with >>. The
break statement is used to exit the innermost loop.

The specification we would like to use for the multiplier is a series
of formulas of the following form.

AG(waiting A req A (inl mod m = t) A (in2 mod m = j)
— A(—ack U ack A (overflow V (output mod m = k))))

Here, ¢ and j range from 0 through m — 1, k = :3 mod m, and waiting
is an atomic proposition which is true when execution is at line 13 in
the program. Since verifying liveness properties such as those involv-
ing the until operator tends to be more complex than verifying safety
properties, we will actually check the following weaker properties:

AG(waiting A req A (inl mod m = 1) A (in2 mod m = j)
— A(—-ack W ack A (overflow V (output mod m = k)))).

The operator W is the weak until operator; it is like U, but the second
argument is not required to ever become true. In general, A(f W g) is
equivalent to A(gV fV g). We will later verify (using a different ab-
straction) that eventually an acknowledgment is always received. Then,
using the tableau construction, the combination of these two properties
can then be checked to imply the original specification.

To verify the properties described above, the input n2 and the
outputs factor? and output were all abstracted modulo m. The output
factor! and its corresponding input in/ were not abstracted, since the
entire bit pattern of factor! is used to control when factor? is added to
output. We performed the verification form = 5,7, 9, 11 and 32. These
nnmbers are relatively prime, and their product, 110,880, is sufficient
to cover all 2'° possible values of output. Now we would like to use
theorem 4.3 to deduce the following class of propertices:

AG(watting A req A (nl =) A (in2 = j)
— A(-ack W ack A (overflow V (output = i3)))).

In order to do this, we need to argue that we know the value of output
modulo the different values of m at the same time point. Our property

146 CHAPTER 4. ABSTRACTION

input in1[16];

input in2[(16];

input req;

output factori[16] := 0;
output factor2(16] := 0;
output output[16] := 0;
output overflow := 0;
output ack := 0

X -~ DO W N -

9 procedure waitfor(e)
10 while !e wait endwhile
11 endproc

12 loop

13 vaitfor(req);

14 factorl := inl; factor2 := in2;

15 output := 0; overflow := 0; wait;

16 loop

17 if (factorl = 0) | (overflow = 1)

18 break

19 endif;

20 if factori[0] =1 .
21 (overflow, output) := (output:17)+factor2
22 endif;

23 factorl := factorl >> 1; wait;

24 if (factorl = 0) | (overflow = 1)

25 break

26 endif;

27 (overflow, factor2) := (factor2:17) << 1;
25 wvait

29 endloop;

30 ack := 1; wait;

31 vaitfor(!req);
32 ack := 0
33 endloop

Figure 4.8: A 16 bit multiplier

4.3. EXAMPLE ABSTRACTIONS 147

was in fact chosen so that this is the case: we know something about
the value of output at the point where ack is first asserted.

The entire verification required slightly less than 30 minutes of CPU
time on a Sun 4. We also note that because the BDDs needed to repre-
sent multiplication grow exponentially with the size of the multiplier,
it would not have been feasible to verify the multiplier directly. Fur-
ther, even checking the above formulas on the unabstracted multiplier
proved to be impractical. Note that the specification above admits the
possibility that the multiplier always signals an overflow. We verified
that this is not the case using the abstraction described in the next
subsection.

4.3.2 Representatinu by logarithm

When only the order of magnitude of a quantity is important, it is
sometimes useful to represent the quantity by (a fixed precision ap-
proximation of) its logarithm. For example, suppose : > 0. Define

Igi = [log,(: + 1)],

e, lgiis 0 if 2 is 0, and for ¢ > 0, lgi is the smallest number of bits
needed to write ¢ in binary. We take A(1) = lg1.

As an illustration of this abstraction, consider again the multiplier of
figure 4.8. Recall that a multiplier which always indicated an overflow
would satisfy our previous specification. We note that if Igi + Igj <
16, then lg:y < 16, and hence the multiplication of ¢ and j should
not overflow. Conversely, if gz + 1gj > 18, then lgi; > 17, and the
multiplication of : and j will overflow. When gz + lgj = 17, we
cannot say whether overflow should occur. These observations lead us
to strengthen our specification to include the following two formulas.

AG(waitingAreqA(lg in! +lg in? < 16) — A(-ackW ackA-overflow))
AG(waitingAreqA(lginl +1g in2 > 18) — A(—~ack W ack A overflow))

We represented all the 16 bit variables in the program by their loga-
rithms. Compiling the program with this abstraction and checking the
above properties required less than a minute of CPU time. We can also

148 CHAPTER 4. ABSTRACTION

use thic abstraction to verify that the program does eventually give an
acknowledgment.

AG(waiting A req — A(—ack U ack))

Checking this required only a few seconds of CPU time. To ensure that
we can in fact conclude the stronger specifications such as

AG(waitingAregA(lg inl +1g in2 < 16) — A(—ackUackA-overflow)),
we verified that
AG(p1 Apy — A(—p3 W p3 A p4))

and

AG(p, = A(—ps U p3))

implies
AG(pi Aps = A(-p3 U p3 A py)).

Instantiating p; with waiting A req, p3 with ack, and p; and ps as
appropriate proves the desired properties.

4.3.3 Single bit and product abstractions

For programs involving bitwise logical operations. the following abstrac-
tion is often useful:
h(7) = the jth bit of ¢,

where j is some fixed number.

[f Ay and h, are abstraction mappings, then h(z) = (h,(z), h2(2))
also defines an abstraction mapping. Using this type of abstraction,
it may be possible to verify properties that it is not possible to verify
with either h; or h, alone.

As an example of using these types of abstractions, consider the
program shown in figure 4.9. This program reads an initial 16 bit
input and computes the parity of it. The output done is set to one
when the computation is complete; at that point, parify has the result.
The operator ~ used on line 8 denotes exclusive-or. Let §z be true if the
parity of z is odd. One desired property of the program is the following.

4.4. ABSTRACTION VIA OBSERVERS 149

1. The value assigned to b has the same parity as that of in; and

2. #b & parity is invariant from that point onwards.

We can express the above with the following formula.
~gin A AX(~6A AG ~(§b @ parity)) vV fin A AX($b A AG(fb & parity))

To verify this property, we used a combined abstraction for in and b.
Namely, we grouped the possible values for these variables both by
the value of their low order bit and by their parity. The verification
required only a few seconds (note however, that this example is simple
enough to check directly with a BDD-based verifier).

I input in([16];

2 output parity[1] := 0;
3 outnmut b[16] := 0;

4 output done[1] := 0

5 b := 1in;

6 wait;

7 while b !'= 0

8 parity := parity - b{0];
9 b :=b > 1;

10 wait

Il endwhile;

12 done := 1

Figure 4.9: A parity computation program

In chapter 5, we will consider another very powerf{ul type of abstrac-
tion. Now however, we turn to a method for abstracting the temporal
behavior of a system.

4.4 Abstraction Via Observers

The abstractions defined previously give us a method for changing the
set of values that a state component can take on. However, the abstract

150 CHAPTER 4. ABSTRACTION

state component values were functions only of a single state in the
unabstracted model. In this secticn, we consider a more general form
of abstraction, which we call abstraction via observers. This type of
abstraction makes it possible to have abstract state components that
depend on the history of the computation. ‘

Example 4.9 Consider a functional unit that receives some inputs,
computes for some number of steps, and then gives an output. In
a hardware implementation of such a device, pipelining is often used
in order to increase throughput. A pipelined implementation might
receive one set of inputs during each clock cycle and (after a suitable
startup latency) give one output per cycle. That is, the behavior of the
implementation over time is as follows:

Time 1 2 2 4 5 6

| input | compute | compute | output
input compute ;| compute | output
input | compute | compute | output |

Suppose that we want to relate this to a specification that is given
purely in terms of input/output behavior. That is, the timing of the
specification is as follows:

Times 1 to 3 4 5 6

[start up [input/out.putl input/output l input/output J

Clearly, some method is needed for relating the timing of the imple-
mentation with that of the specification. This will be done via an
observer process. An observer is a process that watches, but does not
affect, some of the state components of the implementation. It has as
outputs some of the state components of the specification. The com-
position of the observer with the implementation gives a specification-
level view of the actions of the implementation. We will then compare
this combined implementation/observer with the specification. Con-
versely, the specification may be combined with the observer to give an
implementation-level view of the actions allowed by the specification.
The observer process may have internal state that it uses to track what
it has seen.

4.4. ABSTRACTION VIA OBSERVERS 151

Let us make our example a bit more precise. Suppose that the
functional unit reads a 16 bit input z and outputs a 16 bit result y. We
will construct an observer process that watches z and y and produces
as outputs ¥ and y that correspond to the abstract-level I/O behavior.
The observer must synchronize an input on z with the corresponding
y output, and so it will store successive z inputs internally and only
output them after a suitable delay. In contrast, it will pass y values to
the abstract level immediately. The effect will be that at the abstract
level, an T value and its corresponding § will appear simultaneously
at the outputs of the observer. The actual observer process for this
example is given by the program of figure 4.10. In the figure, the line

mealyoutput y_hat[16] := y;

is used to introduce a Mealy-type output (one that may depend on
both inputs and internal state). In this case, the Mealy output y_hat
is defined to be invariantly equal to the expression y, i.e., y is always

equal to the input y. a
1 input x[16];

2 internal x_internal_1[16];

3 internal x_internal_2[16];

4 output x_hat[16];

5 input y[16];

6 mealyoutput y_hat[16] := y;

7 loop

b x_hat := x_internal_2;

9 X_internal_2 := x_internal_i;
10 x_internal_l := x;

11 wait

12 endloop

Figure 4.10: Observer process for example 4.9

In the example, we mentioned that an observer should not affect the
concrete level state components. To see why this is the case, suppose

152 CHAPTER 4. ABSTRACTION

that in the example above, the observer blocks any attempt to give
the implementation the input z = 12. Because of this, it will never
output the value z = 12. Now assume that our implementation works
correctly for all values except z = 12, but for z = 12, it produces
y = 33 instead of the correct y = 44. Then when we run our observer
in parallel with the implementation, all of the pairs (Z,%) that are
observed at the abstract level are in fact correct. Hence, the (correct)
abstract specification will be able to simulate this behavior, and we
might erroneously conclude that the implementation is right. A similar
problem can arise if the observer refuses to accept certain y values; in
this case, the observer may suppress what would be an incorrect output
by the implementation. We conclude that the observer must always be
able to accept anything that might occur at the implementation level.
(In the terminology of Dill, an observer must be receptive; the notion
that we will use here corresponds to receptiveness in prefix-closed trace
structures [43].) We now give the forma! definition of an observer.

Definition 4.8 An observer over a set of state components A’ is a
structure M with the following properties:

1. The observer must be able to accept any initial value for the state
components in A’. Formally, for every labeling function f over A’,
there exists s € I such that f = L(s) | A"

2. The observer must be able to accept any chaage in the state
components in A”: for every labeling function f over A’ and every
state sy € S, there exists s; such that f = L(s,)] A’ and R(so, s).

3. In order to avoid having the acceptance condition rule out some
infinite sequences of concrete-level behaviors, we also require F' =
#. (The structure being abstracted may have acceptance condi-
tions, but the observer may not; this is again a receptiveness
issue.)

Now suppose that we are given a set of observers. To get the
abstract-level view of M, we would like to just run the observers in
parallel with M. However, there is still one other way that incorrect
behavior by M can be suppressed. Suppose that we have two observers

4.4. ABSTRACTION VIA OBSERVERS 153

that both output the same abstract-level state component z. If one
wants to set Z = 12 and the other wants to set Z = 13, then the net
effect is that they deadlock, and whatever implementation-level behav-
ior lead up to this situation is effectively disallowed. This is again
unacceptable, but we can avoid the problem by simply requiring that
different observers do not both try to output the same abstract-level
component. Note, however, that it is legal for multiple observers to
watch the same component. With this restriction, we can now abstract
the implementation by just composing with our observers and hiding
the concrete state components.

Definition 4.9 Let A = {ao,...,an21}, A= {@,...,an-1}, and sup-
pose that Q = {Mo,...,M,_,} is a set of observers over A with
A; C AU A. Also assume that for every pair M;, M, of observers
with ¢ # 7, Ain A;N A = 0 (no two observers output the same abstract
state component). Let M’ = Mo || ... || M;m_1. If M is a structure over
A, then we define obs, (M) (with respect to O) to be (M || M') | A.

The map obs, takes us from the concrete level to the abstract level.
We want to produce a conservative connection, and at the moment we
have the situation shown in figure 4.11. Assume that we are given M;
what implementation-level behavior should this represent?

o~

(M| M)A =< M

obs, : implies ?

v
M =< ?

Figure 4.11: Situation after defining obs,

To answer this question, let us think about the composition M’ of
all of the observers in O. We can view this composition as telling us

154 CHAPTER 4. ABSTRACTION

all of the abstract behaviors that would be observable if the imple-
mentation was completely nondeterministic and could do anything at
any step. Now M will generally not be consistent with all of these ab-
stract behaviors. We can prune away the incompatible ones by simply
composing M’ with M. The result of this composition involves both
concrete- and abstract-level state components, so we then eliminate the
abstract components by restricting to A. This process of composition
and restriction is the desired map obs;.

Definition 4.10 Let A, fi, etc., be as in definition 4.9. If M is a
structure over A, then we define obs, (M) (with respect to 0) to be
(M| M)] A.

We then have the following result, whose proof is deferred.
Theorem 4.4 (obs,,obs;) is a conservative connection.

Example 4.10 The type of abstraction given by abs, and abs; can
be expressed using observers. There would be one observer for each
abstraction function h,. The observer for h; simply looks at the value
of state component a; and immediately sets @; to h; of that value. In
other words, we would be using a set of observers of the form shown in
tigure 4.12. Then (abs,, abs;) corresponds directly to (obs,,obs;). O

| input a_i[16];
2 mealyoutput a_i_hat[16] := <h_i(a_i)>;

loop
wait
endloop

3 ..
- e

))

Figure 1.12: Observer process corresponding to (abs,, abs;)

45. SUMMARY 155

4.5 Summary

We have shown how abstraction can be used to simplify the process of
checking <. The basis for using abstraction is the notion of a conser-
vative connection. The mappings in a conservative connection relate
abstract-level and concrete-level structures, and if < holds at the ab-
stract level, we can infer a similar relationship at the concrete level. We
considered two main conservative connections. One was used for just
for data abstraction. A more general one, abstraction via observers.
allows us to abstract temporal behavior as well. In the case of data ab-
straction, we discussed a method for directly compiling abstract-level
structures from a finite-state program and a user-supplied abstraction
mapping. We implemented a compiler based on these ideas and used
it to verify a number of examples.

4.6 Technical Details

We begin by sketching the proof that collapse is monotonic and can be
distributed over compositions.

Proof We first prove monotonicity. Suppose M < M’ with 4 = A’
and assume without loss of generality that every state of M and M is
reachable. Let M = collapse(M) and M = collapse(M'). Obviously,
for every state s of M, there is a state s’ of M’ with s <X s'. Then
L(s) = L'(s'), and s0 S C §'. We claim that T defined by W, f C A, f
for all] € S is a simulation relation. Obviously related states agree on
their labelings. Consider a path f(,fl .in '\l We must show that this
saIme sequence is a path in M. Since R f,,f,H there exist s, and s,4)
in M with [, = L(s:), fimr = L(siz1), and R(si,5i41). Now choose a
state st of M’ wnth s, % st There must be a state si, of M’ with
sip1 X sty and R(s), 80,0). This implies I’i’(i,,f’,’:l) The result must
also satisfly the acceptance conditions, and so C is indeed a simulation
relation. [f s € [, there must be s” € 17 with s <X &". This implies that
C relatcb mmal states in M to initial states in M. Hence we conclude
M < M, i.e., that collapse is monotonic with respect to <.

156 CHAPTER 4. ABSTRACTION

__Let M" = M || M’, M= collapse(M), M = collapse(M'), and
M" = collapse(M"). Define the relation C to be

{(L"((5,5"),(L(s), L'(s")) | (s, ") € 5" }.

First, note that if (s, s’) € S”, then s and s’ agree on the labeling for the
state components in AN A’. Hence, L(s) and L'(s) agree on these same
state components, and so (L(s), L'(s")) is a state of M || M’. C is in fact
a simulation relation. ClearlL the states related by C have identical
labeling functions. Let 7" = {’ . be a path in M. By definition
of collapse, for all 7, there are states (.s,, 1), and (¢;,t}) of M" such that
R"((si, 80, (£ t)), L"((s1,8})) = f7, and L"((t:,t})) = ff4y. This im-
plies R(s;,t;) and R'(s!,), and so R(L(s;), L(t;)) and RI(L'(s), L'(t)).
Further, L(s;) and L'(s!) must agree on the labeling of state compo-
nents in AN A’, as must L(t;) and L'(t;). Thus, (L(s:), L'(s{)) and
(L(t;), L'(t})) are states of M || M, and there is a transition between
these states. This leads to a path in M I M' whose states are related
by C to the states on 7. Thus, C is a simulation relation. Also, each
initial state of M*” must have the form L”((s,s')), where (s,s') is an
initial state of M”. Now we find (L(s), L(s’)) is a state of M It AL,
and L(s) and L(s') are initial states since s and s’ must be. Thus, C
relates initial states to initial states, and so M"” < M || M’; collapse
does indeed distribute in the expected way over composition. O

We now turn to theorem 4.1, which states that (abs,,abs;) is a
conservative connection.

Proof Let M and M’ be structures over A and A with abs,(\I) =< Al
and define M = abs, (M), M' = d'b.s,(A\l). Detine C by s C (&, f')ilf
L(s)= [and s < 5. We prove that C is a simulation relation.
Obviously, states that are related by T have the same labeling.
Snpp()se that 7 = sgs182... is a path in M from s = s, and that
C (s, f'). Notice that = is dISO a pdth m M. Since s < ; there
must be a (orrcsp(mdmg path T = sps31shy o from &= & i .
Thus, we have states s; in M’ such that s, j st & for all i. This implies

h(L(s;)) = L'(s i) Now let f! = L(s,); from t,he definition of M’, we

4.6. TECHNICAL DETAILS _ 157

have that (s', f') is a state in M’. By the definition of C, s; C (sh, f).
Hence we have a sequence

7' = (s, L(30))(55, L(51))(s, L(52)) . .-

in M’. From the definition of the acceptance condition of M’, it is easy
to see that this is in fact a path, and since it corresponds to x, we
conclude that C is a simulation relation. _

If s is an initial state of M, then s is also an initial state of M. Since
M < ﬁ', there is a corresponding initial state s’ of M'. As above, we
find that (s, L(s)) is an initial state of M’. Hence C relates initial
states to initial states, and so M < M’,]

The proof that the approximating semantics ([-).) produces a valid
abstract-level model (theorem 4.2) is essentially a large induction on
the structure of expressions and statements.

Proof Let M = [p], M = collapse(abs,(M)), and M’ = [p].. We first
note that S and §’ are isomorphic. The former are labeling functions
over A. The latter are valuations mapping variables v; to elements
in Dz, and each variable v; has its associated @;. Further, che state
labeling functions for isomorphic states are the same. In S, itis simply
the state itself. In S, it maps a; to the value of v; under the valuation
that is the state. Let @ be this isomorphism: rf)(f) will be the valuation
mapping v, to f((i,). We extend ¢ to sets and relations in the natural
way. [f we can demonstrate that (b(ﬁf) C R’ and ¢(i) C 17, then this
wifl obviously be sufficient to prove <. Now [is the image of the
set of labeling functions for initial states of M under k. Applying ¢
transforms these labeling functions back to valuations mapping each
v to something in Dz . Now the states of M are valnations mapping
variables to domains D, . Let o be such a valuation; we write h(o) to
denote the valuation mapping v to hi(a(v;)). Using this notation. we
see o(1) is just h(1). Similarly, o(R) = h(R). Thus, we want to prove
h(R)C R and h(1) C I".

To do this, it is enough to show that for every £ statement s,
h([s]) € [s]u. The proof here will proceed by induction on the structure
of 5. For some of the cases, we will need an auxiliary result relating the

158 CHAPTER 4. ABSTRACTION

value of an expression under the two semantics. Let o be a valuation
mapping v; to an element of D,. Claim: for every Ly expression e,
h(le)o) € [e]u(h(a)). To see this, we proceed by induction on the
structure of e.

1. Suppose e is a variable v;. Then [e]o = o(v;), and h([e]o) =
ki(o(v;)). [e)u(h(o)) is true for d € Dz iff (h(a))(vi) = d. Now
(h(e))(v;) = hi(o(v;)) = h([e)o), and thus the result holds in this

case.

2. Assume e is fi(eo,...,eq1). h([e]a) = h(fi([eo]o. ... [en-1]0)).
On the other hand, [e].(h(0)) is true for d iff

3dy ... duzy [([eoluh(9))(do) A -+ A ([en1]uh(0))(dnsr)
A Py (do, ... dn-1,d)).

Let d; = [e;}o, and t.ake d; = h(d;). By the induction hypothesis,
h(fe: ﬂa E fei]u(h(o)) for all i. Hence h(di) € [e]u(h(a)), d; €
[e:]u(h(o)). Recall that Py, is given by P (do, ... dy_y.d) iff

3d, .. .d,._,d[n/_\l h(d;) = d; A h(d) = d A fi(do, . .., dn-1) = d].

1=0

Let d = fi([eo)o. ... [enz1]o), e h([e)o) = h(d), and set d =
h(d).

At this pomt, we have do, vvvy dy_y, d with corresponding abstract
values do, e d,,_l, d. We know h(([elo) = d. We also know
di € [e}u(h(a)). From the definition of Py, and the fact that
d = f(do,...,d,-y), we sce that Py, (du,.. (l,, l,d) Hence d €
lel.(h(a)). which is the desired result.

We now proceed to the induction on statements. Recall that we are
trying to prove h([s]) C [s]. for all statements .

i. Consider an assignment v; := c. [s](o,0') iff o' = o[[c]o/ri].
[s].(7,0") iff d € [e]u6 and ¢’ = &[d/vi]. To sbow A([s]) C [s]..
we assume [s](o,0’) and prove [s}.(h(o), h(0")). Let & = h(o)
and ' = h(o’). Obviously & and &' can differ only on the value.

4.6. TECHNICAL DETAILS 159

for v;. Set d = [e]o and take d = h(d). Then (h(d"))(v:) = h(d) =
d. We must show d € [e)u5. However, [e].d = [e]u(h(a). By
the above subresult, d = h(d) = h([e]eo) € [e].(h

2. Suppose s is the conditional eq — sg ... | ea=t = Sp—1. We have
[eo—50 | ... | enc1—3a-1](o, o) iff there exists i such that [e.-Ja =
true and [s;](0,0'). Also, [eo — 30| ... | en-1 = 8u—1]u(,07) iff
there exists i such that ([e;}.&)(true) and [s;}.(&,"). Again, we
assume [s](o,o’) and prove [s],(h(c),h(c’)). Define & = h(o)
and ¢’ = h(¢'). By the induction hypothesis, if [s,}(c,0"), then
[s:}u(8.0"). Thus, we just need to know that if [e;]o = true, then
([esJuo)(true). By the previous subresult, if e, evaluates to true,
then h(true) € [e;].(h{c)). But we also a.ssumed that true was
not abstracted (h(true) = true). Hence ([e:]u(h(a)))(irue), as
required.

3. For a sequential or parallel composition, the result follows in a
straightforward manner from the induction hypothesis. m]

Finally, we prove theoremn 4.4: that (obs,,obs;) is a conservative
connection.

Proof Let M be a structure over A, M = obs «(M), \/17’ be a structure
over A, and M” = obs(\I’), and suppose M < M". Deline C Y
s T (s",s')iff L(s) = L"((5",5")) and (s,s') < 5”. We show that Cis a
simulation relation between M and M".

Obviously states related by C have identical labelings. Suppose
s C (.;7’,3’). Let # = s¢s1s... be a path from s = sy in Al. By the
definition of observer, there must be a path (s¢,sg)(s1,5})... in M,
where s = 5. We must haw (< s) < 5" and so there is a path T of
the form s” ”s’z’.,. from s” = 5! in M" with (80, 87) <X s” for all .. This
implies that s and :?’ have identical labelings on A, and so (.s;’,.s:) 15
a stote of M for all 2. Further, L(s;) = L"({(- ;’, s1)) since (s;,5)) 18 a
state of M. Hence s, C (s:', s1) for all 7, and so C is indeed a simulation
relation.

Now let s be an initial state of M. By the definition of observer,
there is some s’ € [’ such that (s,s’) is an initial state of M. Since

160 CHAPTER 4. ABSTRACTION

M < M", there must be a corresponding state s of M". Now (s",8') is
an initial state of M”, and L"((s",s’)) = L(s). This implies s C (s",s’),
i.e., C relates initial states to initial states. Hence M <X M"”.]

We also note that both obs, and obs; are monotonic and can be
pushed over composition. Consider, for example, obs,. Monotonicity
is straightforward: if M’ is the composition of the observers, then M, <
M, implies M, || M’ < M || M’, and restricting both sides to A also
preserves <. When we push obs, over corgposition, we wanti to compare
((My || M) || M*) L A with ((M, || M) L A) || (M2]| M) | A). To prove

that the latter can simulate the former, we show that
{ (((3175'2)’31)7 ((slasl)’ (5213,))) l s € 51132 € S2q s' € S' }

Is a simulation relation.

Chapter 5

Symbolic Parameters

The dramatic effect of using BDDs to implement traditional verification
algorithms is well-documented {4, 23, 37, 48, 67. 89]. However, they can
also be used to add powerful new extensions to these methods. This
additional power arises because BDDs give us a flexible and efficient
facility for manipulating sets and relations over finite domains. In this
chapter, we indicate some of the ways that this facility can be used.

5.1 First-Order Quantification

We extend CTL (definition 2.1) to include first-order quantification
operators. To do this, we first allow the atomic formulas to mention
variables that range over data values. We will assume that each variable
is associated with some particular domain of values.

Definition 5.1 The logic QCTL (“Quantified CTL”) over a set of
state components A is the set of formulas given by the following in-
ductive definition: '

1. The constant true is a formula.

2. For each state component a in A, element d of D,, and variable r
ranging over values in Dy, a = d, a = r, and & = d are formnlas.

3. If ¢ and 9 are formulas, then ~¢ and ¢ A 9 are formulas.

161

162 CHAPTER 5. SYMBOLIC PARAMETERS

4. If ¢ and ¢ are formulas, then AX p, A(p V) and A{pU1) are
formulas.

5. If p is a formula, then so is Yz ¢.

We use the usual abbreviations; also 3z ¢ denotes —Vz ~yp.

The semantics of these formulas over structures is essentially the
same as standard CTL, except parameterized by a valuation for the
individual variables.

Definition 5.2 Let M be a structure and ¢ be a formula with A 2
comp(p). Satisfaction of p by a state s of M with respect to a valuation
o for the individual variables in ¢ (M, s,o |= @) is defined as follows:

1. Satisfaction for true, ~p, @A, AX p, etc., are defined essentially
as in satisfaction of CTL formulas (definition 2.4).

2. M,s,0 =a=diff L(s,a) =d. M,s,0 Fa=1ziff L(s,a) =
o(z). M,s,c Fz=diff o(x) = d.

3. M,s, o= Vziff for every d in the domain D, associated with r,
M,s,old/z] E ».

M satisfies the formula g if for every initial state s of M and valuation
o for the individual variables, M,s,o | . (Thus, free variables in »
are treated as being under the scope of a universal quantifier.)

At first glance, model checking for QCTL would seem to be an in-
efficient prospect. Whenever we encounter a subformula V. o, we may
have to check ¢ for each possible value of x. Naturally, the situation
is worse when quantifiers are nested. Overall, since the model check-
ing problem for QCTL obviously subsumes the satisfiability problem
for quantified boolean formulas (QBF) [53], we cannot expect an algo-
rithm that is polynomial time in the size of our formula. Consider the
situation in practice however. A natural usce for QCTL is to describe
systems that handle data. For example, if we are verifying a protocol
and wish to specify that whatever data is sent is eventually received.
we might use the following formula:

AGVz (send A senddata = z — AF(rcv A revdata = z)).

5.1. FIRST-ORDER QUANTIFICATION 163

The implementation probably behaves in a similar fashion regardless
of what the data is. As a result, once we have verified that the formula
holds for one particular data value, we expect that it will hold for all
the others as well. If we could argue that the value that we picked
is somehow representative of an arbitrary value, we might be able to
avoid having to check them explicitly. Unfortunately, making this pre-
cise is difficult, especially if the implementation does have some data
dependent behavior. Suppose, for example, that the implementation
computes the parity of the data that is sent. In this case, it may not be
enough to check just one data value, but we probably could check one
data value with even parity and one with odd parity. Overall we are
faced with a dilemma: forcing the user to decide which cases to check
is tedious and potentially error-prone, while doing the analysis for each
individual data value is potentially time-consuming. In a BDD-based
setting, we have a chance to avoid both of these problems. We will
be checking all data values simulianeously. Because of sharing in the
BDDs, data values for which the implementation behaves similarly are
likely to be collapsed. In essence, the BDDs allow us to do an automatic
case analysis to exactlv the degree of granularity required in order to
ensure soundness.

Figure 5.1 below gives an algorithm for model checking QCTL for-
mulas. The algorithm is expressed in terms of manipulation of relations;
these manipulations can be translated into BDD operations in the stan-
dard way. In the figure, only the function that determines the set of
states satisfying a particular formula is shown; the check to see that
every initial state satisfies the given formula is straightforward. The
function takes as parameters the (sub)formula to be checked and a list
representing the variables which this subformula is in the scope of.

Extending the counterexample generation facility is straightforward.
When producing a counterexample for a formula o at the state s, where
the top-level operator of ¢ is a temporal one, we will have already fixed
values for the variables zg, ..., r,-; on which ¢ depends. Taking the
relation P(t,xo,...,T,-1) that we obtained when evaluating ¢, we sct
the z; and obtain a relation Q(!) which is the set of states satisfying
for those values. The r; will have been chosen so that Q(s) does not
hold. We now construct a counterexample for the top-level operator
using the standard methods. To show a counterexample for Vx ¢ at the

164 CHAPTER 5. SYMBOLIC PARAMETERS

function check(p, (Zo,-.-,Zn-1))
if o = true

let P(s,zg,...,Zn-1) be identically true
else if p = (a = z,)

let P be such that P(s,zo,...,za-1) iff L(s,a) = z;
else if p = (2; = d)

let P be such that P{s,zo,....2,) iffz; =d
elseif p = AX 9y

else if p = Vzv

Q := check(¥,(z,z0,...,Zn-1))

let P(s.zg....,Zpy) IEVZQ(s, 0 rg.....0,0_y)
endif
return P

Figure 5.1: Model checking algorithm for QCTL

5.2. SYMBOLIC ABSTRACTIONS 165

state s, we start with the relation P(t,z,z,...,z,-;) obtained when
evaluating . Fixing the z; gives a relation Q(¢,z). For some value of z,
it must be the case that -Q(s,z). We fix z at such a value, display it,
and then generate a counterexample for .

5.2 Symbolic Abstractions

In this section, we demonstrate that the symbolic manipulation facil-
ities available with BDDs can greatly increase the power of the data
abstractions considered in section 4.1. To illustrate the method, we
consider verifying the trivial program shown in figure 5.2. (This pro-
gram is written in the same language used for most of the examples in
chapter 4.)

1 input a[8];

2 output b{8] := 0;
3 loop

4 b := a;

5 wvait

6 endloop

Figure 5.2: An example program

We wish to show that the next state value of b is always equal
to the current state value of . Using QUTL, we could express this
requirement as :

AGVr(a=1r — AXb=1zx).
Let us fix a particular value of ¢, say 42:

AG(e =42 - AX b = 12).

If we wanted to verify just this property, we could use the following
abstraction for a and b

0, ifln=4d2
h(n):{ ifn 12

1, otherwise.

166 CHAPTER 5. SYMBOLIC PARAMETERS

When we apply this abstraction and compile the program, we obtain
the transition relation R(a,a’ ,b, b) defined by ¥ = . Here, the primes
denote next-state variables, a.nd all of the variables range over {0,1}.
Now to check that our program works correctly for the value 42, we
would check the following formula at the abstract level:

AG(@=0—AXb=0).

The formula would of course turn out to be satisfied. Now we obviously
do not want to have to repeat this process for each possible data value.
Suppose now that we were to modify our abstraction function as

follows: o it
h(ry=¢ TS
1, otherwise.

We have introduced a new symbolic parameter that our abstraction
depends on. Imagine compllmg the program with this abstraction; we
should get a relation R(&,a’, b, ¥, c) that is parameterized by c. Fixing
¢ = 42 will give the relation R that we encountered above. [f we
could run the model checking algorithm on our parameterized relation.
we would obtain a parameterized state set representing the states for
which our formula is true. Now our specification

AG(a=0—- AXb=0)
is essentially saying
AGla=c— AX b= 0).

If the formmla turns out to be true for all values of ¢, we will have
proved

Vr AGla =1 — AXb=1r),

which is equivalent to our oniginal specitication. The observation now
is that by introducing 8 extra BDD variables to encode the possible
choices for ¢, we can in fact:

I. represent he with a BDD (the user will supply just h.):

2. compile with k. to get a BDD representing R(a, a’, b, [;',(:) (the
compiler handles this step automatically);

5.2. SYMBOLIC ABSTRACTIONS 167

3. perform the model checking to obtain a BDD representing the pa-
rameterized state set (the model checker does this automatically);
and

4. if necessary, choose a specific ¢ and generate a counterexample
(also done by the model checker).

Further note that, in this case, the program behaves identically regard-
less of the value of ¢, so when we compile it, the BDD representing R
will be independent of the extra variables that we introduced. As a
result, doing the model checking will be no more complex than in the
case when we were just verifying

AG(a =42 > AX b = 42).

In general, we have found that sharing in the BDDs makes it possible
to efficiently perform the parameterized abstraction, compilation, and
model checking. We call abstractions such as h. “symbolic abstrac-
tions”; below, we give some more complex examples that make use of
these abstractions.

Our first example is a linear sorting array. The array consists of one
cell for each integer to be sorted; the program for an individual cell is
show in figure 5.3. The cells are numbered consecutively from left to
right. In the array, each cell’s left and leftsorted inputs are connected
to its left neighbor’s y and sorted outputs, and each cell’s right input
is connected to its right neighbor’s x output. The values to be sorted
are the values of the z outputs. The sort proceeds in eycles. During
cach cycle, exactly half the cells (either all the odd numbered cells or
all the even numbered cells) will have their comparing output equal
to one. These cells compare their own r output with that of their right
neighbor. The smaller of these values is placed iy, In addition. if the
values were swapped, the cell’s sorted output is set to zero. During the
next clock period, the right neighbor’s x and sorted values are copied
from the first cell’'s y and sorted outputs. When the rightmost cell’s
sorted output becomes one, the sort is complete. In this example, we.
consider an array for sorting cight nnmbers. The comparing output is
set to zero or one depending on the cell’s position in the array. The
left and right ends of the sorting array are dummy cells for which z is

168 CHAPTER 5. SYMBOLIC PARAMETERS

2! _ 1 and 0 respectively. The left cell’s sorted output is also fixed
at I.
To verify this program with symbolic abstractions, we used a simple
partitioning
0, ifn<g
hc n) = ’)
(n) { I, ifn>c

where c is the parameter. If two numbers are not equivalent according
to this abstraction, we can find the truth value of a comparison between
them.

The properties which we verified are:

1. for every c, eventually the values of the z outputs are such that
all numbers which are less than ¢ come before all numbers which
are greater than or equal to ¢, and this condition holds invariantly
from that point on; and

~

for every c, the number of the z outputs which are less than c is
invariant except when elements are being swappe...

The first property implies that the array is eventually sorted. The
second one implies that the final values of the z outputs form a permu-
tation of the initial values.

We performed the verification by abstracting all the 16 bit variables
in the program using the abstraction described above. The temporal
formulas corresponding to the two properties are

AFAG((z[T) < evel] >) A Afell] < eV (0]

AV

<))
and, for all j,
(ST o(x]t) < ¢) = j) = AG(stable — (T1_,(z[i) <) =).

To make the fornuilas more readable, we have written r{1] < ¢ instead
of Iz] = 0 and zfti] > c instead of F[z] = I. Also. the summation
notation is used to denote the number of formulas r{i} < ¢ which are
true. Finally, stable is an atomic proposition which is true when every
cell is at the wait statement on line 28, In-order to ensure that the
cells maintain lockstep, we also checked

AG AF stable

5.2. SYMBOLIC ABSTRACTIONS 139

input left{16];

input leftsorted(1];

output sorted[1] := 0;

output comparing(1] := <0 or 1>;
output swap(1] := 0;

output x[16];

output y[16];

-1 O Ut W —

8 input right[16];

Y loop

10 if comparing = 1

11 swap := (x < right);
12 wait;

13 1f swap = 1

14 y = X;

15 x := right;

16 sorted := 0

17 else

18 y := right

19 endif;

20 walt

21 else

22 walt;

23 walt;

24 x := left;

25 sorted. := leftsorted
26 endif;

27 comparing := !'comparing;
2N wait

290 endloop

Figure 5.3: A sorting cell program

170 CHAPTER 5. SYMBOLIC PARAMETERS

Verifying these properties required just under five minutes of CPU time
on a Sun 4. In addition, checking these properties on the unabstracted
program was not feasible due to space limitations.

5.3 Symbolic Compositions

For our last example, a pipelined arithmetic circuit, we will use symbolic
abstractions together with an additional technique called “symbolic
compositions”. Suppose that we have a system with a number of related
processes My, ..., M,_,. Also suppose that we wish to verify a class of
properties o, ..., Yn-1, where ¢, describes the interaction of M; with
the remainder of the system, modeled by M. Using the compositional
reasoning ideas described in chapter 3, we might try to check ; on just
the composition M || M;. Instead of doing this for each individual :
however, we may be able to use symbolic parameters to do all of the
checks at once. To see how this might be possible, we consider a simple
example.

Let My, ..., M;s be registers, where M, is described by the program
in figure 5.4. Note that 7 is used as a parameter in this program. During
each cycle, one of the registers is set to value of the input a. Each
register will have a different ontput b[z].

1 input addr(4];
2 input a[16];
3 output b[16]

4 loop

D if addr = <i>
6 b := a

7 endif;

8 vait

9 endloop

Figure 5.4: An example program

5.3. SYMBOLIC COMPOSITIONS 171

Suppose that we want to verify the following class of properties:
AGVz(addr =i Aa=z— AX(:] = z)),

where : ranges from 0 to 15. To verify the property for : = 7, it will
obviously be enough to check

AGVYz(addr =7 Aa =z — AX(b[7] = z))

on M;. Now suppose we rename b[7] to b in M7 and in the above
property before doing the check. This obviously will not affect whether
the verification succeeds or not. Now consider how we can do this for
all ¢ simultaneously. Taking the program for M;, compiling it, and
renaming b{¢] to b can be done by just compiling the program above
using a new 4 bit symbolic parameter to represent :. The result is a
parametric representation of M; . Using that same symbolic parameter,
we can express the class of properties (after renaming) with the formula

AGVz(addr=iANa=z — AX(b= 1))

When we run the model checker now, the effect is to check the spec-
ification involving M; using just M;. For this particular example, the
whole verification can be done using about the same amount of time
and space as would be required for checking just one of the properties.
Note that when doing the verification, we have managed to avoid com-
posing all of the M, and hence we never deal with more than a small
part of the system state space.

We now turn to a more extensive example, a pipelined arithmetic
unit. A block diagram circuit is shown in figure 5.5. This example was
first described by Burch et al. [23]. It performs three-address arithmetic
and logical operations on operands stored in a register file. The pipeline
operates as follows:

1. During the first cycle of the instruction, operands are read from
the register file into the instruction operand registers.

2. During the second cycle, the result of the operation is computed
and stored in the pipeline register after the ALU.

3. In the third, the result is written back to the register file.

172 CHAPTER 5. SYMBOLIC PARAMETERS

Thus, performing an operation requires three cycles. Each instruction
to the pipeline specifies the source and destination registers and the
operation to perform. In addition, the pipeline has a stall input that
indicates that the instruction is invalid and should be ignored. More
specifically, the instruction’s destination register should not be affected
if the stall input is true. The stall signal might, for example, be used
to indicate an instruction cache miss; the signal would be asserted until
an instruction is fetched from main memory. In order to allow results
to be used before they are actually written into the register file, data
can be fed from the ALU output or from the ALU output register back
to the ALU operand registers. To simplify matters slightly, we shall
consider a pipeline that only performs addition operations, but the
same techniques can be used to verify other operations as well.

Read ports Write port
g — Register file
2~
=
-]
3
9
]
3
=
Control

a4 Pipe register

=

=

L?-
Bypass circuitry

Figure 5.5: Pipeline circuit block diagram

The specification that we will check is the following: for every pos-
. sible value of the source and destination addresses, the value of the
destination register in three cycles will be equal to the sum of the val-
ues in the source registers in two cycles. The use of the values in the
source registers two cycles hence is necessary to allow for the possibility

5.3. SYMBOLIC COMPOSITIONS 173

that those registers may be in the process of being updated.

AG(srcaddr! =i A srcaddr2 = j A destaddr = k A —stall
— VaVb AX AX((reg(i] = a) A (reg[j] = b)
— AX(reg[k] = a +)))

Also, any given register is not affected if either it is not the destination
register or the current instruction is stalled.

AG(stall vV destaddr # 1
— Va AX AX((regt] = a) = AX(reg[i] = a))).

Observe that to verify one of these properties, we should need only
the registers involved (reg(i], reg[j], and reg[k]) plus the other parts of
the pipeline. Thus, we are in a position to use a symbolic composition.
We introduce new symbolic parameters i, j and k. We then compile
three copies of the program for a register, parameterized by ¢, j and £,
with the reg output renamed to regi, regi and regk respectively. Dur-
ing the compilation process, we also want to abstract the data values
that can be stored in the registers. For verifying the addition opera-
tion, we will introduce symbolic parameters a and b, and then use the
abstraction

0, ifn=a
I, ifn=0
ha =
s(n) 2, fn=a+b;

3, otherwise.

Now we would like to check

AG(srcaddr! =1 A srcaddr?2 = j A destaddr = k A —stall
— AX AX((regi = 0) A (regj = 1)
— AX(regh = 2)))

and
AG(stall v destaddr # i — AX AX((regi = 0) —» AX(regi = 0))).

There is one minor problem however: the map h,; may not be well-
defined. Suppose, for example, that @ = b; then A, (a) could be 0 or 1.

174 CHAPTER 5. SYMBOLIC PARAMETERS

Further, if a = b = 0, it could even be 2. We can resolve this difficulty
in one of two ways. The first is to do a by-hand case analysis in order
to get a series of well-defined maps. For this example, we could look at
the following cases:

1. The possible abstract values are a # 0, 0, and everything else; we
check that the system works correctly when both operands are 0,
and when one operand is 0 and the other is a.

(V]

. The possible abstract values are a # 0, a 4+ a, and everything else.
We verify that the pipeline works when both operands are a.

3. The possible values are a, b, a+b, and everything else. We require
a # b, and for both a and b to be nonzero. Then we check that
the system is correct when the operands are a and b.

It is easy to see that this covers all possibilities, and in each case we can
build a well-defined abstraction mapping. Note that with this method,
we encode a set of k abstract values using [log, k] bits. These second
way to fix the problem is to allow the abstract classes to overlap, and
to encode the k possible abstract values with & bits. In the case of A,
above, we would use three bits, for a, b and a + b, and have

(0, fn#aAn#bAn#a+b
I, fn=aAn#bAn#a+b
2, fn#aAn=0An#a+b
3, fn=aAn=bAn#a+l
hap(n) = ¢ .
4, fn#aAn#bAn=a+l;
5 fn=aAn#bAn=a+b
6, fn#aAn=bAn=a+lb;
L7, fn=aAn=bAn=a+h

Then, to say that regi has the value a, we would write
regi € {1,3,5,7}.

We used the second method for this example.
The largest pipeline example we tried had 64 registers in the register
file and each register was 64 bits wide. This circuit has more than 4,000

5.3. SYMBOLIC COMPOSITIONS 175

state bits and nearly 10'3% reachable states. The verification required
less than 25 minutes of CPU time on a Sun 3/60. The verification time
scales polylogarithmically in the number of registers and linearly in the
width of registers. Burch, Clarke, and Long [22] verified essentially
the same circuit using no abstraction. With 8 registers, each 32 bits
wide, they required 4 hours and 20 minutes of CPU time on a Sun 4
to complete the verification. In addition, their verification times were
growing cubicly with the number of registers and quadratically with
the register width.

176 CHAPTER 5. SYMBOLIC PARAMETERS

Chapter 6

Verification of the
Futurebus+ Cache
Coherence Protocol

In this chapter, we apply some of the ideas from chapters 2 through 5 to
the verification of the cache coherence protocol described in the [EEE
Futurebus+ standard. Qur goal is to demonstrate that the methods can
be used to verify designs of realistic complexity. The work described
below is an extension of work that we reported earlier {29].

6.1 Overview of the Protocol

Futurebus+ is an emerging bus standard for high-performance multi-
processors. The goal of the committee that developed Futurebus+ was
to create a public standard for bus protocols that was unconstrained
by the characteristics of any particular processor or device technology
and that would be widely accepted and implemented by vendors. Tt
has been adopted by the Navy’s next-generation computer resources
program as its standard linear backplane, and companies such as DEC,
Sun, Motorola and Force Computers are developing Futurebus+ prod-
nets. The Futurebus+ specification is actually a number of standards,
covering issues from physical interconnection through high-level proto-
cols. We will be concerned with the [EEE Standard for Futurebus+—

177

178 CHAPTER 6. A CACHE COHERENCE PROTOCOL

Logical Protocol Specification (IEEE Standard 896.1-1991) [59]. Part
of this standard is a cache coherence protocol designed to insure con-
sistency of data in systems composed of many processors and caches
interconnected by multiple bus segments. (For an overview of a number
of cache coherence protocols, see the articlc by Archibald and Baer [3].)

Consider a multiprocessor system such as the one shown in fig-
ure 6.1. Each of the processors P1, P2, and P3 has access to a central
shared memory, M. P3 is on the same bus as M, so read and write
requests from P3 can be delivered to M directly. In contrast, requests
from P1 and P2 must pass through a communications network before
reaching M. (There may actually be many processors and memories
scattered throughout the system, but each memory location must be-
long to a single home memory. Also, all of processors that can access
the memory location must form a tree rooted at the memory.) There
are two main problems that arise in accessing memory.

1. When there are many processors contending for access to M, the
bandwidth required to ensure adequate performance can be very

high.

2. The latency of servicing requests that must pass through the net-
work can be very long.

In order to alleviate these problems, each processor is equipped with a
cache. A cache can hold copies of some of the memory locations in M.
When a processor wants to read or write, it can often obtain the data
from its cache, or store it in the cache. This is a fast operation, and be-
cause programs exhibit locality of refcrence, a piece of data is typically
moved into a cache once and then accessed a number of times. However,
while caching is effective for reducing latency and bandwidth require-
ments, it can destroy the original shared memory semantics of accesses.
Suppose, for example, P1 obtains a copy of some memory location in
its cache and then writes to that location. If P3 now wants to read the
same location, it must somehow know that the data is stored in P1’s
cache, and that the copy in memory is out of date. Maintaining shared
memory semantics is the purpose of the cache coherence protocol.

In the Futurebus+ protocol, sequences of consecutive memory loca-
tions are grouped together into cache lines. Each cache lineis treated as

6.1. OVERVIEW OF THE PROTOCOL

Pl P2
MA
P3 CA

Bus 2

Bus |

Figure 6.1: Multiprocessor system

179

130 CHAPTER 6. A CACHE COHERENCE PROTOCOL

a unit for coherence purposes. Under the protocol, coherence is main-
tained on individual buses by having the individual processors snoop,
or observe, all bus transactions. As an example, consider figure 6.1
again. Suppose that P1 obtains a copy of a cache line and writes to
one of the locations in the line. Then P2 tries to read a location in
the same line by putting a read request on the bus. P1 will snoop
the read request and will intervene to supply the data directly to P2.
Coherence across buses is maintained using special cache agents and
memory agents (CA and MA in the figure). The CA/MA pair is col-
lectively called a bus bridge. The cache agent is responsible for issuing
commands on bus | on behalf of the remote processors P1 and P2. Sim-
ilarly, the memory agent is responsible for representing the memory M
on bus 2. If Pl issues a read on bus 2, then MA will pass the request
down to the cache agent CA, and CA will reissue the read on bus 1.
Next, the memory supplies the data to CA, and CA passes it back
to MA, which in turn forwards it to P1. Obviously. a sequence such as
this can tie up the buses for quite a while. Thus, in order to increase
performance, the protocol uses split transactions. When a transaction
is split, it is divided up into separate initiation and completion phases.
In our example, the read that P1 issues would be split to free up bus 2.
While the read request is propagating towards memory, bus 2 can be
used by P2 to issue other requests. When MA finally receives the data
that Pl requested, it issues an explicit response transaction to supply
the data.

There are two other performance optimizations used in the protocol.
First, writes are not propagated back to main memory immediately. In-
stead, the data from the write is simply stored in the cache. Later, when
the line needs to be replaced in the cache, an explicit copyback is used
to return the up-to-date data to main memory. Second, processors may
obtain data from other processors’ transactions by snarfing. Suppose
for example, that Pl and P2 both wish to obtain readable copies of
some cache line. They arbitrate for the bus, and let us suppose that P2
wins the arbitration and issues the read request. The memory agent
splits the transaction, goes off and obtains the data, and then issues a
response on bus 2. P2 will take the data from this response. but Pl
is also allowed to obtain the data as it passes on the bus. When this
happens, both P1 and P2 end up with valid copies of the line.

6.1. OVERVIEW OF THE PROTOCOL 181

The Futurebus+ protocol falls in the class of MESI coherence pro-
tocols. MESI stands-for “Modified-Exclusive-Shared-Invalid” and rep-
resents the possible states that a cache line can be in within a given
cache.

1. A cache that has no information about a particular cache line
is in the invalid state for that line. Obviously, neither read nor
write access is allowed to any of the memory locations within the
line.

o

A cache that is in the shared-unmodified state has a readable
copy of the cache line, and other caches may have copies as well.
Writing is not allowed when the cache line is in this state.

3. A cache that is in the ezclusive-modified state has a readable and
writable copy of the line. It is the only place in the system where
up-to-date dzta is stored, and hence must supply the data when
someone else issues a read request. '

4. The last state, ezclusive-unmodified, represents a combination of
the shared-unmodified and ezclusive-modified states. In this state,
the cache has a copy of the data and only reading is allowed. How-
ever, it is also guaranteed that no other cache has a copy of the
data. If the processor whose cache has the erciusive-unmodified
copy decides to write to a location in the cache line, the line is sim-
ply placed in the exclusive-modified state and the write procecds.
There is no need to issue any sort of transaction to eliminate
copies that may be in other caches. On the other hand, if the
processor never writes to the line and it is necessary to purge the
line from the cache, then there is no need to copv the data back
Lo main memory.

Next, we describe the different types of bus transactions that de-
vices can issue. There are two basic read transactions: read-shared and
read-modified. The former is used to request a readable copy of a cache
line, while the latter requests both read and write access. Both types
of transactions may be split. In the case of a read-shared transaction,
other devices are allowed to snarf that data as it is supplied to the

182 CHAPTER 6. A CACHE COHERENCE PROTOCOL

requester. Note that the read-modified transaction requires any copies
of the cache line in other caches to be eliminated. Because of this,
read-modified transactions can be split for two distinct reasons:

1. the supplier of the cache line may split the transaction if it is not
able to immediately respond with the data (splitting for access);
and

o

a processor or cache agent may split the transaction if it currently
has a copy of the line and cannot invalidate that copy immediately
(splitting for invalidation).

Snarfing is obviously not allowed on read-modified transactions.

If a cache currently has a shared-unmodified copy of a cache line,
it may request write access by issuing an invalidate command. This
transaction causes other caches with shared copies to eliminate those
copies. Any of these caches may delay the invalidation process by
splitting the invalidate transaction. Once a cache has obtained an
exclusive-modified copy of a cache line, it is the sole holder of the data in
that line. As such, it is responsible for intervening in any read requests
by other caches. By intervening, it supplies the data to someone else,
and hence transitions out of the ezclusive-modified state. The only
other way that it can exit this state is by issuing a copyback transaction
to return the data to main memory. During a copyback, any cache that
would like to obtain a copy of the data in the liae is allowed to snarf
it. This includes the cache issning the copyback.

There are also two basic types of responses, correspounding to the
two types of reads. A shared-response is used to supply data to a cache
whose earlier read-shared was split. Other devices may snarf data from
the shared-response. A\ modified-response is used to grant read-write
aceess, and as such it is issued in response to split read-modificd aund
invalidate transactions. Recall that a read-modified can be split ci-
ther for access or for invalidation. Becanse of this, there are actu-
ally two forms of modified-response: one supplying data. and one that
is used only as an acknowledgment of invalidation (an address-only
modified-response). Note also that a single invalidate may be split by
multiple devices. Hence there must be some way to tell when all of them
have finished invalidating. This is done by allowing modified-response

6.1. OVERVIEW OF THE PROTOCOL 183

transactions to be split. Suppose, for example, that P1 and P2 are both
invalidating. Pl finishes and issues a modified-response. P2, which is
still invalidating, cannot let this response pass, so it splits. Later,
when P2 finishes invalidating, it issues a second modified-response.
Since P2 is the last devic> done, this response is not split. The cache
that issued the original invalidate proceeds when it sees this unsplit
modified-response. Simiiarly, read-modified transactions may be split by
multiple devices, and as with invalidate, an unsplit modified-response
signals the requesting device that it may proceed.

Devices communicate their requests to split transactions, snarf data,
or intervene using three bus lines called SR, TF, and [V. These are
wire-or signals: effectively, each device i has outputs sry, tf;, and iv;,
and SR = V, sr;, etc. (Thus, if any device requests that a transaction
be split, it will be split.) A device asserts sr; to request that the current
transaction be split. It raises ¢f; when it wants to snarf data from the
current transaction. Finally, if it observes a read request. and it has
an erclusive-modified copy of the requested cache line, it asserts v, to
indicate that it will supply the data for the read.

Example 6.1 We consider a sequence of transactions dealing with
some fixed cache line for the system shown ir figure 6.1. Iritially,
all caches have nvalid copies of the cache line. If P1 wants a readable
copy of the cache line, it issues a read-shared on bus 2. The memory
agent MA cannot supply the requested data immediately, so it asserts
its s7 output to split the transaction. It passes the reguest to CAL which
issues the read-shared on bus 1. The memory supplies the data to the
cache agent. and during the transfer, P3 asserts its {f output and snarfs
the data. P3 now has a shared-unmodified copy of the cache line. The
data is passed back to MA. and MA issues a shared-response 1o provide
the data to P P2 snarls the data by asserting 1f during the response.
and both Pl and P2 wind up with shared-unmodified copies. Pl now
requests write access by issuing an invalidate transaction. P2 asserts
sroto split the transaction for invalidation, as does MAL P2 finishes -
validating and issnes a modificd-response . Since P3is not vet invalid,
the memory agent must split this modified-response. The request for
invalidation propagates to CA, which issues invalidate on bus 1. P3
invalidates immediately, and CA informs MA of this. The memory

184 CHAPTER 6. A CACHE COHERENCE PROTOCOL

agent issues a modified-response which is not split, and P1 transitions
to the ezclusive-modified state. P2 now requests read and write access
by issuing a read-modified. Pl intervenes by asserting its iv output
and supplies the data to P2. P1 transitions to the invalid state, while
P2 becomes ezclusive-modified. P2 decides to kick the line out of its
cache, so it issues a copyback to return the data to memory. The mem-
ory agent MA picks up the data as P2 goes to invalid. The data is
passed to CA, which issues the copyback on bus 1. P3 now requests
read access and issues a read-shared. If CA does not snarf the data
by asserting tf, then P3 transitions to the exclusive-unmodified state.
Later, if P3 decides to write, it goes immediately to ezclusive-modified,
updates the line, and then issues a copyback to return the data to M.
O

Split transactions are controlled using requester and responder at-
tributes. When a device issues a request that is split, it acquires a
requester attribute that indicates the type of response it expects to
receive. The device that splits the request gets a responder attribute
that tells what type of response it will eventually issue. The possible
requester attributes are as follows:

1. A cache has the requester-shared attribute when it is waiting for .
a shared-response.

2. The requester-ezclusive attribute is true when a device is waiting
for a modified-response.

3. The final attribute, requester-waiting. will be discussed below,
The responder attributes are similar:

f. A device has the responder-shared attribute when it must even-

tually issue a sharcd-response.

t~

The responder-exelusive attribute is used to indicate that the
cache must eventually issue a modified-response to supply data.

3. When a processor has the responder-invalidate attribure, it must
issue an address-only modificd-response to signal the completion
of invalidation.

6.1. OVERVIEW OF THE PROTOCOL 185

Each cache line has separate requester and responder attributes.

Under the protocol, there may be only one pending transaction per
cache line per bus in the system. Hence, when a transaction is split,
there must be a way of preventing other transactions for the same cache
line from proceeding. This is done using another bus line, WT. WT is
also a wire-or signal, so any device may drive WT high by setting its
individual wt output. If a module has any of the responder attributes
discussed above, then it is already processing one transaction for the
same cache line. When it observes another transaction for the cache
line, it asserts wt to abort this new request. A device that tries to
issue a transaction and observes WT acquires the requester-waiting
attribute. It keeps this attribute until it sees a shared-response or an
unsplit modified-response for the same cache line. At that point, it may
retry its original request.

There is one slight exception to the rule of one pending transaction
per cache line per bus. Consider the system of figure 6.1, and sup-
pose that Pl and P3 both have shared-unmodified copies of some cache
line. Now assume that both processors decide to write to the cache
line at roughly the same time and both issue invalidate transactions.
The cache agent CA must split the invalidate on bus | since Pl has
a copy of the cache line. Similarly, MA has to split P1’s invalidate.
At this point, we have a conflict: P1 is trying to invalidate P3 and P3
is trying to invalidate P1. ln the protocol. this invelidate-invalidate
collision is resolved by allowing an invalidate to be issued underneath
an already pending invalidate. First priority is given to the invalidate
that is proceeding away from main memory. Thus. MA will issue an
invalidate to eliminate the data in PI's cache. After that. CA issnes an
address-only modified-response to give P3 exclusive access. Then the
cache agent uses a read-modified to get the updated data from P3, and
the data is passed to MAL MA issues a modified-response to give an
exclusive-modified copy of the cache line to Pl.

The IEEE Standard for Futurebus+—Logical Protocol Specifica-
tion [39] contaius two sections dealing with the cache coherence proto-
col. The first, a description section, is written in English and contains
an informal and readable overview of how the protocol operates, bat it
does not cover all scenarios. The second, a specification section, 1s in-
tended to be the real standard. This section is written using attributes.

186 CHAPTER 6. A CACHE COHERENCE PROTOCOL

An attribute is essentially a boolean variable together with some rules
for setting and clearing it. The attributes are more precise, but they
are difficult to read. The behavior of an individual cache or memory is
given in terms of roughly 300 attributes, of which about 45 deal specif-
ically with cache coherence. (These 45 attributes reference many of the
other attributes as well.) As an example, the following attribute for
cache modules tells when the cache has a shared-unmodified copy of a
particular cache line:

SHARED_UNMODIFIED. A CACHE or
CACHE.AGENT shall set SHARED_UNMODIFIED and
clear INVALID Vv EXCLUSIVE.UNMODIFIED v
EXCLUSIVE-MODIFIED if

MASTER A (INVALID_STATUS A ~ADDRESS_ONLY A
(READ_SHAREDV READ_MODIFIED)V KEEP.COPY A
(COPY.BACK v SHARED_RESPONSE)) v CACHED A
(REQUESTER_SHARED A SHARED_RESPONSE A
INVALID_STATUS A ~ADDRESS.ONLY A
TRANSACTION.FLAG.STATUS v SNARF_DATA A
~ADDRESS.ONLY v REQUESTER_EXCLUSIVE A
MODIFIED_RESPONSE A ~ADDRESS_ONLY A
SPLIT.SATUS vV ~INVALID_STATUS A KEEP.COPY A
(READ_SHARED v READ_INVALID)).

A CACHE or CACHE_AGENT may set
SHARED_UNMODIFIED and clear
EXCLUSIVE_UNMODIFIED if
EXCLUSIVE_UNMODIFIED.

A CACHE or CACHE_AGENT shali not allow modify
access to the data in a cache line if
SHARED_UNMODIFIED is set. A\ CACHE or
CACHE_AGENT may allow read access to the data in a
cache line if SHARED_UNMODIFIED s set.

Note that even i the specification section, some aspects of a module’s
allowed behavior are deseribed informally. For example. the above at-
tribute specifies a processor’s read-write permissions in English. Fur-
ther, the bus bridge operation is not completely specified in either sec-

6.2. MODELING THE PROTOCOL 187

tion. We are given only that externally, cache agents and memory
agents should “look like” caches and memories. There are some exam-
ples of bus bridge operation and a description of the collision resolu-
tion mechanism, but the coordination between cache agent and memory
agent is not specified in detail. A major part of our verification effort
was devoted to making an appropriate model of the bus bridges.

6.2 Modeling the Protocol

Clearly, verifying a fully detailed model of the protocol at the level
of the attributes would not be practical. Even if the attributes were
completely precise and covered all aspects of the allowed behavior, the
verification tools would not be able to handle this model. Further, since
the attributes are very difficult to understand, it would not be easy to
make appropriate abstractions to simplify the verification process. For
these reasons, we used the English language description as the basis for
our model. Situations where this description was ambiguous or incom-
plete were resolved by referring to the attributes. While constructing
the model, we made a number of simplifications and abstractions (listed
below). For each abstraction, we describe how it would be justified us-
ing the techniques discussed previously. ‘

. The standard specifies how modules should respond to excep-
tional situations, such as detection of a parity error during a data
transfer. In our model, we assumed that these cases do not oc-
cur. Similarly, the standard describes power-up, reset, and con-
figuration protocols. We modeled only the case of steady-state
operation.

o4

A fairly complex protocol is used to arbitrate for the bus and issue
a transaction. In our model, a complete arbitration/transaction
cycle is modeled as a single state transition. Given an actual im-
plementation, we would use abstracticn via observers to make this
tvpe of simplification. Our observer processes would watch the
low-level handshaking and output in one step the high-level indi-
cation of which module was selected as master and which trans-
action it issued. This is similar to the abstraction of a pipelined

188

=1

3.

CHAPTER 6. A CACHE COHERENCE PROTOCOL

system in example 4.9.

We modeled only the transactions involving one cache line. This
type of simplification can be justified using abstraction via ob-
servers and symbolic parameters. Suppose that we have an im-
plementation in which the cache line under consideration is the
one beginning at address a. We also assume that this cache line,
plus its associated tag bits and attributes, is stored at some lo-
cation b in the cache RAM, where b depends on a. We describe
the relevant part of the cache as a symbolic composition. Our ob-
server process then looks at the location b to determine whether
the cache line is in fact in the cache, and if so, what its state is.
The observer outputs this state at the abstract level, or outputs
invalid if the line is not stored in the cache at location b.

The data in the cache line is modeled as a single bit instead of
64 bytes. We can use a symbolic abstraction to perform this
abstraction. The bit can be thought of as representing whether
the value in the line is the 64 byte value ¢, or whether 1t is some
other value.

Components such as processors nondeterministically issue reads
and writes to the selected cache line. To justify this abstrac-
tion, we simply hide the internal state of the processor using the
restriction operator and then apply collapse to reduce the state
space. (In fact, the processor model i1s essentially T, so we know
it can simulate whatever the real processor would do.)

Responses to split transactions are issued after arbitrary delays.
This would be justified in essentially the same way as the previous
abstraction.

The bus bridge model is highly abstracted. This model is dis-
cussed in detail below.

The standard specifies some types of transactions that are in-
tended mainly for peripheral devices doing 1/0. Cache coherence
is generally not maintained when these instructions are used, so

6.2. MODELING THE PROTOCOL 189

we assumed that they would not be issued for the cache line that
we modeled.

In our model, all of the devices on a single bus are composed syn-
chronously, i.e., all of them update their state during a transaction on
that bus. Different buses are composed in an asynchronous manner:
during a step of the system, the components on one bus execute a
transaction, while those on other buses make idle transitions.

In our model of a bus bridge, the cache agent and memory agent
share a small amount of internal state. The set of possible internal
states represents a generalization of the possible states of a cache line
in a processor cache. These states are as follows:

I. When the bridge is in the invalid state, it has no information
about the cache line.

2. In the local-shared state, the bridge has an internal copy of the
cache line, and other caches below {on the cache agent side of)
the bridge may have copies. This bus bridge state corresponds to
shared-unmodified in a processor cache.

3. In the shared-valid state, the bridge has an internal copy, and
caches both above and below the bridge may have copies. This
also corresponds to shared-unmodified.

4. The shared-invalid state is a situation in which the bridge does
not have a copy of the line, but caches both above and below the
bridge may. (Note that while bridges must maintain cache tags
for the lines that are in remote caches, they need not store the
line itself.) As with the previous two states, this one corresponds
to shared-unmodified in a processor cache.

5. The bridge may be in the remote-shared-unmodificd-valid state,
indicating that the bridge has a copy of the line, and that caches
above the bridge may also have copies. This corresponds to the
exclusive-unmodified state in a processor cache.

6. The remote-shared-unmodified-invalid state is similar to the pre-
vious state, but the bridge does not have a copy.

190 CHAPTER 6. A CACHE COHERENCE PROTOCOL

7. In the ezclusive-unmodified state, the bridge has an unmodified
copy of the cache line, but no other caches in the system may
have copies. This is also analogous to the erclusive-unmodified
processor cache state.

8. The remote-ezclusive-modified state in the bridge means that
some cache above the bridge has an ezclusive-modified copy of
the line.

9. The remote-shared-modified state is one where the bridge has a
copy of the line, remote caches may have copies, and the data
is different than that stored in main memory. Like the previous
state, this one corresponds to the ezclusive-modified state of a
cache line.

10. Finally, the ezclusive-modified bridge state corresponds to the
exclusive-modified processor cache state, and represents a situa-
tion where the bridge has the only valid copy of the data in the
line.

In our initial model, the cache agents and memory agents chose com-
mands nondeterministically based only on the internal bridge state.
There was no explicit passing of commands between the two agents.
Consider, for example, a configuration like the one of figure 6.1. Sup-
pose that all of the caches and bridge are in the invalid state. If Pl
issues a read-shared, then the MA will examine the bridge state, find
that it is invalid, and decide that it must split the read request. At some
later point, CA can examine the bridge state, see that it is invalid, and
nondeterministically choose to issue a read-shared on bus 1. Suppose
that this read completes and that P3 snarfs the data: then the bridge
transitions to the local-shared state. Later still, the memory agent may
get a chance to execute. Seeing that the bridge is in the local-shared
state and that it owes a response to L, it may onndeterministically
issue a shared-response. If this happens, then Pl ogets “he data and the
bridge transitions to either the shared-valid or the shared-invalid state.
Note that with this model, there is no guarantee of progress. The ad-
vantage is that the bridge model is relatively simple, which helps make

6.3. SPECIFYING CACHE COHERENCE 191

the verification possible. Further, it can simulate a wide variety of pos-
sible implementations. For example, a bridge that detected sequential
accesses and attempted to prefetch cache lines would be covered by
this model. The abstractions used in constructing the model can be
justified using abstraction via observers plus hiding and collapsing.

The protocol model was written in the hardware description lan-
guage used by SMV. SMV (“Symbolic Model Verifier”) is a BDD-based
CTL model checker developed by McMillan as part of his thesis [67].
There, he used SMV to verify another hierarchical cache coherence
protocol, the protocol used by the Encore Gigamax [68, 67). Due to
the size of the model (about 3000 lines of code), we will not give it
here. However, in order to give a feel for the language, a simplied frag-
ment is shown in figure 6.2. This fragment deals with the responder
attribute for the cache line being modeled and the wt output of a de-
vice. The language provides module facilities for structuring designs
(line 1). The VAR declaration (line 2) specifies state components. All
components have finite type: in this case, we declare a boolean and a
value with enumerate type. The way components change is specified
using the ASSIGN declaration (line 5). We can specify either the initial
and next state values of the component (line 6), or we can say that the
component is invariantly equal to some expression (line 24). Compo-
nents without assignments are treated as inputs. The language includes
facilities for specifying nondeterminism; by assigning a set to a com-
ponent (line 26), we indicate that the value of the component should
be chosen from the elements of the set. The model consists of four
major modules, representing processor caches, memories, cache agents,
and memory agents. There are smaller modules defining pieces such
as the buses. Each module is essentially a series of case statements,
one per component. This case statement tells how the component
changes based on the current cache line state, requester and responder
attributes, bus master, command, etc.

6.3 Specifying Cache Coherence

In this section, we discuss the specifications used in verifying the proto-
col. More exhaustive specifications are possible; for example, we might

192 CHAPTER 6. A CACHE COHERENCE PROTOCOL

1 MODULE responding-device

2 VAR
wt: boolean;

[SX]

4 responder: {none, exclusive, invalidate, shared};
5 ASSIGN

6 init(responder) := none;

7 next(responder) :=

8 case

9 WT: responder;

10 master:

11 case

12 CMD=shared-response & responder=shared: none;
13 CMD=modified-response &

14 responder in {invalidate, exclusive}: none;
i5 1: responder;

16 esac;

17 CMD=read-shared & sr: shared;

18 CMD=read-modified & sr: exclusive;
19 CMD=invalidate & sr: invalidate;
20 CMD=modified-response & 'sr &

21 responder=invalidate: none;

22 1: responder; .

23 esac;

24 wt :=

25 case

26 WT: {0, 1};

27 'master & !(responder=none) &

28 I (CMD in {shared-response, modified-response}): 1;
29 1: 0;

30 esac;

Figure 6.2: A small part of the program describing the protocol

6.3. SPECIFYING CACHE COHERENCE 193

develop specifications of each individual type of device describing how
it responds to different transactions. Here, we have only tried to de-
scribe what cache coherence is, not how it is achieved. We begin with
some basic safety properties. Each device model includes two flags,
bus-error and error that become true when the device observes an il-
legal combination of bus signals or an unexpected transaction. These
conditions are defined in the standard. For example, while devices may
assert sr during an invalidate transaction, they should never assert iv.
If a module observes IV high during an invalidate, the bus-error state
component becomes 1. The error flag becomes true when a device ob-
serves a transaction which should not occur given its internal state. For
example, if a processor cache has a shared-unmodified copy of a cache
line, and a read-shared is issued, then no other cache should intervene
(by asserting iv) in that transaction. If another cache does intervene,
then that cache must have an ezclusive-modified copy of the line. This
should not be the case since the first cache has a readable copy. Thus,
we have the following formula for every device d in our system:

AG(—~d.bus-error A ~d.error). (6.1)

Here, d.error indicates the error state component in device d. We also
require that if the processor cache P1 has an exclusive copy of the cache
line, then no other cache P2 should have a copy.

AG(Pl.ezclusive — P2.state = invalid) (6.2)
Here, P!.exclusive is an abbreviation for
Pl.state € {exclusive-unmodified, exclusive-modified}.

The next two properties stzte that data must be consistent within
the caches: if two caches have readable copies, then they must agree
on the data. Similarly, if a cache has a copy and memory is up-to-date,
then the data in the cache and the data in memory must be the same.

AG(Pl.state = shared-unmodified N P2.state = shared-unmodificd
— Pl.data = P2.data) (6.3)
AG(Pl.unmodified A - M.memory-line-modified
— Pl.data = M.data) (6.4)

194 CHAPTER 6. A CACHE COHERENCE PROTOCOL

The abbreviation Pl.unmodified means
Pl.state € {shared-unmodified, exclusive-unmodified }.

The memory-line-modified component of a memory is false when the
data in memory is supposed to be accurate.

Our final safety property is one specifying strong sequential con-
sistency or strong coherence. This property states that caches must
always read up-to-date data (i.e., the last value written).

Ya AG(P1.state = ezclusive-modified A Pl.data = a
— AX A(write V P2.unmodified — P2.data = a)) (6.5)

The formula write is true whenever one of the processor caches is in
the ezclusive-modified state, i.e., when one of them can write the data
in the line.

We would also like to check that the protocol ensures some form of
progress. However, our initial model does not have this property. We
can state an absence-of-deadlock property, i.e., that it is always possible
for a cache to get readable and writable copies of the line.

AGEF Pl.state = shared-unmodified (6.6)
AGEF Pl.state = exclusive-unmodified (6.7)
AGETF Pl.state = erclustve-modified (6.3

Unfortunately, these are not ACTL properties, and hence checking that
they hold for the model does not guarantee that they are true in an
actual system. We can use them for debugging purposes though; if one
of these properties is false, then we can examine the counterexample
produced by the model checker to see whether it represents a real dead-
lock. This is the approach we originally took. In section 6.6, we disenss
strengthening the model and verifying stronger progress properties.

6.4 Verifying the Protocol

[n verifying that our model of the protocol satisfied the specification,
we used the following strategy: '

6.4. VERIFYING THE PROTOCOL 195

1. Start with small combinations of caches and memories, and work
up to the more complex hierarchical configurations.

2. Concentrate first on the simple safety properties given by formulas
6.1 through 6.4. These properties are all have the form of AG p;,
where p; is a propositional formula.

The motivation behind the first element above is obvious. Why did
we start with the simple safety properties? The idea is that we can
check all of these properties using one forward search of the state space,
checking at each step whether the set of states reached intersects the
states satisfying —p; for any . Once we have found a violation, we can
terminate the search immediately and trace back to find a sequence of
steps leading to the error. The ability to terminate the search early was
important since the BDD representing the set of reached states tended
to become very large once an erroneous transition had occurred. This
is a fairly common phenomenon in BDD-based verification. In a correct
system, there is often a nice characterization of the set of legal states,
and this regularity is captured well by the BDDs. However, when the
system is started outside of this set of states, it tends to make random-
looking transitions, with the result that all regularity is quickly lost.
By modifying SMV to perform this type of forward search with early
termination, we saved a lot of time when doing the initial debugging.
Once we had a model that satisfied all of the basic safety properties, we
checked the more complex formulas (6.5 through 6.8). When evaluating
the fixed points for the subformulas inside the AG, we restricted the
searches to the set of reachable states. (As above, the idea was to avoid
searching in ill-behaved parts of the state space.)

Even with the numerous simplifications made so far, verifying hi-
erarchical configurations or configurations with more than a few pro-
cessors required long execution times. For example, the very simple
example of a single bus with two caches required about 10 minutes of
CPU time on a Sun 3/60 to verify. In order to overcome this problem.
we modified SMV so that we could use hiding and the collapse mapping
to simplify the model. We then designated certain state components
as hidden, and the restriction and ccllapsing were performed antomat-
ically. When verifying the properties discussed in the previous section,
we hid all of the state components except:

196 CHAPTER 6. A CACHE COHERENCE PROTOCOL

1. the requester and responder attributes;
2. the cache line state and contents components; and
3. the error detection state components.

Note that all of the properties could be specified in terms of the above
state components. With hiding and collapsing, the single-bus, two-
cache example requires only a minute of CPU time. Table 6.1 shows
the verification time (in CPU seconds) and BDD nodes required for
single-bus configurations with two through seven caches. The TR BDD
column shows the size of the BDD representing the transition relation,
and SS BDD is the largest state set BDD. Both transition relation
and state set BDDs grow linearly with the number of caches. The
verification time grows roughly quadratically. (We also checked larger
configurations with up to three buses and nine processor caches using
a Sun 4. The state set BDDs grow linearly with the number of buses.
The transition relation BDDs could grow linearly as well, but actually
grow quadratically due to the way SMV represents transition relations.)

Caches | CPU time | TR BDD | SS BDD
2 60 7231 325
3 120 24831 715
4 225 50914 1128
5 345 79173 1541
6 535 107473 1951
7 370 135773 2367

Table 6.1: Verification times for single-bus configurations

6.5 Errors Discovered

Performing the verification exposed two errors in the standard. The
first of these can actually occur in simple single bus configurations,

6.5. ERRORS DISCOVERED 197

which was somewhat surprising. Consider the system shown in fig-
ure 6.3. Initially, both caches are invalid. Processor P1 obtains an

P1 P2

M

Figure 6.3: System exhibiting first error

exclusive-unmodified copy of the cache line. Next, P2 decides to issue
a read-modified, which P1 splits for invalidation. However, the mem-
ory M does not split for access, and it supplies a copy of the cache
line to P2. Under these circumstances, the standard specifies that P2
transitions to the shared-unmodified state. However, Pl does not ac-
quire the responder-invalidate attribute. Instead, P2 is supposed to
issue a subsequent invalidate to eliminate the copy of the line in Pi’s
cache. Further, Pl retains an ezclusive-unmodified copy of the line.
This is obviously a dangerous situation, for now Pl can transition to .
exclusive-modified and write to the line before P2 issues the invalidate:

A CACHE or CACHE_AGENT may set
EXCLUSIVE_MODIFIED and clear
EXCLUSIVE_UNMODIFIED if
EXCLUSIVE_UNMODIFIED.

A CACHE or CACHE_AGENT may allow read or modify
access to the data in a cache line if

EXCLUSIVE_MODIFIED is set.

The problem can be fixed by requiring that the processor cache Pl tran-
sition to the shared-unmodified state when it splits the read-modified
for invalidation. There is a related problem when a read-modified is

""‘M

198 CHAPTER 6. A CACHE COHERENCE PROTOCOL

split for both access and invalidation. The proposed change eliminates
the error in all situations.

The second error arises in hierarchical configurations such as the
one shown in figure 6.4. P1, P2, and P3 all obtain shared-unmodified

P1 P2
Bus 2
L
MA ‘
P3 CA
Bus 1

M

Figure 6.4: System exhibiting second error

copies of the cache line. Pl issues an invalidate transaction that P2
and MA split. P3 issues an invalidate that CA splits. The bus Lridge
detects that an invalidate-invalidate collision has oceurred. That is, 73
is trying to invalidate P1, while P1 is trying to invalidate P3. Recall
that in this situation, the standard spccifies that the collision should be
resolved by having the memory agent invalidate P1. When the memory
agent tries to issue an invalidate for this purpose, P2 sces that there
is already a transaction in progress for this cache line and asserts the

WT signal on the bus.

6.6. VERIFYING LIVENESS 199

A module shall set WAIT_-CACHED while
CACHED N RESPONDER A (READ.SHARED v
READ_MODIFIEDV INVALIDATE V READ_INVALID).

MA observes this and acquires the requester-waiting attribute.

A module shall set REQUESTER.WAITING if
MASTER A WAIT.STATUS A (READ.SHARED v
READ_MODIFIED vV INVALIDATE Vv READ_INVALID).

Recall that when a module has this attribute, it will wait until it sees a
completed response transaction before retrying its command. P2 now
finishes invalidating and issues a modified-response. Since P3 is not in
the invalid state, this response must be split by MA. However, MA still
maintains the requester-waiting attribute.

A module shall clear REQUESTER_WAITING if
CACHED AN (SHARED_RESPONSE v
MODIFIED_RESPONSE A -SPLIT_STATUS v
WRITE_INVALID).

At this point, MA will not retry its command since it is still waiting
for a completed response. However, no such response can occur; we
have reached a deadlock. The deadlock can be avoided by having MA
clear the requester-waiting attribute wher it observes that P2 has fin-
ished invalidating. (It does this as follows: Caches assert TF when
they split a modified-response. The memory agent asserts SR for each
modified-response to keep Pl from proceeding. When MA observes a
modified-response with TF not asserted, it knows that all caches other
than Pl are invalid. 1t then clears requester-wailing and issues its
invalidate.)

6.6 Verifying Liveness

While the properties specifying absence of deadlock (6.6-6.8) were nse-
ful in finding errors, as we noted earlier, they are not preserved when we
move to a different level of abstraction. In this section, we show how

200 CHAPTER 6. A CACHE COHERENCE PROTOCOL

to prove stronger progress properties. We will concentrate on show-
ing that if a cache issues a read-shared transaction, then eventually it
obtains a readable copy of the cache line.

AG(P.master A P.cmd = read-shared A ~WT
— AF P.unmodified) (6.9)

Our original model in fact does not satisfy this specification. This
is for the following reasons:

1. The arbitration model is unfair; a device may never have a chance
to issue a command.

2. A module that owes a response tu a split command may never
issue the response, even if it is infinitely often. the bus master.

3. In hierarchical configurations, the selection of which bus will next
transition is unfair.

4. If a cache agent splits a command, the correspdonding memory
agent may never pass on that command. (Similarly, a cache agent
may not pass on commands split by the corresponding memory
agent.)

In order to check the above property, we first had to strengthen our
model. SMV provides a method for specifying acceptance conditions,
and we used this facility. To ensure that arbitration is fair, we can just
require that infinitely often, each device is chosen as the bus master.
We can require that responses eventually be issued by enforcing

(GF P.master) — GF(P.responder # shared
V P.master A P.emd = shared-response).
(Unfortunately, SMV only supports fairness constraints of the form
A. GF pi. However, we are already requiring that GF Pomaster, so we

simplified the above constraint to just

GF(P.responder # shared V P.ma. ter A P.cmd = shared-response).

6.6. VERIFYING LIVENESS 201

This is known as the B® method [61].) To eliminate the last problem,
we added some interlocks to the state of the bus bridge. When the
cache agent splits a read-shared, it eventually sets an interlock to let
the memory agent knows that it needs a valid copy of the line. The
memory agent sees this interlock and, if necessary, issues a read-shared
on its bus to obtain the data. It also splits all requests that would
require invalidating the data while the interlock is set. Eventually,
the cache agent gets the data, issues a shared-response, and clears the
interlock.

We begin by considering just the single bus case. When we tried to
verify property 6.9 directly, we found that the time and space required
was excessive. One reason was that we could no longer hide most of
the state components (as described in section 6.4). This is because
the property and the acceptance conditions depend on the previously
hidden components. Also, evaluating the AF operator when there are
acceptance conditions requires a nested fixed point computation. A
large number of iterations were needed for this computation to con-
verge. Because of these problems, we did an assume-guarantee style
verification. To begin, consider why we expect the property to be true,
i.e., what properties of the environment of a cache must hold? If the
environment does not split the read-shared, then the cache will obtain
the data as part of the transaction. If the read-shared is split, then the
environment must eventually issue a shared-response:

AG(P.master A P.cmd = read-shared A - WT A SR
— AF CMD = shared-response). (6.10)

(CMD is the command line on the bus.)

We now use this property as an assumption about the environment
of P and then try checking the desired specification. [t does not hold:
the counterexample produced by the model checker shows a situation
in which the environment behaves so as to cause the P.error state
component to become true. As we have already verified

AG(~d.bus-error A ~d.error)

(property 6.1), we make this an assumption as well. The verification
again fails, and the trace shows a situation where the read-shared is not

202 CHAPTER 6. A CACHE COHERENCE PROTOCOL

split, but where the cache fails to transition to a readable state because
CMD is not equal to P.cmd. This obviously should not occur, so we
add the following assumption:

AG(P.master - CMD = P.cmd). (6.11)

With the above assertion, the property still may not hold: if the en-
vironment asserts WT while issuing the shared-response, the processor
cache does not change its state. However, modules should not assert
WT in this situation:

AG(CMD = shared-response — ~WT). (6.12)

Taken together, these assumptions are strong enough to imply the prop-
erty 6.9. At this point, we have verified

(6.10,6.1,6.11,6.12) P(6.9).

Of the assumptions that needed to be discharged, 6.10 is the most
complex, so we consider it first. We will check it using the bus model B
plus some assumptions about the devices on the bus. The natural
assumption about each device is:

AG(—d.master AN CMD = read-shared A~WT A sr
— AF CMD = shared-response). (6.13)

This states that if a device splits a read-shared, then eventually a
shared-response must occur. Making this assumption about every de-
vice (except P) and then checking 6.10 shows that 6.10 did not hold.
The error trace involves P splitting its own read-shared. This is clearly
illegal, so we assume

AG(P.master A P.emd = read-shared — —P.sr). (6.1:1)
With this additional assumption, property 6.10 is true.

(6.14,6.13 for each d) B(6.10)

To verify 6.13, we go back to the model of a processor cache. Bascd
on our earlier expérience, we assume that no errors would be detected

6.6. VERIFYING LIVENESS 203

and that any commands the cache issues will appear on the bus (prop-
erties 6.1 and 6.11). We also assume that the cache will get to be bus
master to issue the shared-response:

AG AF Pl.master. (6.15)

With these assumptions, the model checker produces an error trace
that shows the cache splitting a read-shared and the environment sub-
sequently issuing a read-modified. The cache raises Pl.wt to hold up
this read, but WT does not go high on the bus. At this point, the P1
loses the responder-shared attribute. We therefore assume

AG(Pl.wl — WT). (6.16)

This is still not sufficient to prove 6.13. The counterexample has P1
observing WT on the bus and acquiring the requester-waiting attribute
before splitting the read-shared and acquiring responder-shared. In
this case, the device that raises WT should also assert it during the
read-shared. In general, P1 should never have nontrivial requester and
responder attributes at the same time:

AG(Pl.responder = none V Pl.requester = none). (6.17)
Adding this assumption is sufficient:
(6.1,6.11,6.15,6.16,6.17) P1(6.13).

A similar proof shows that memory also satisfies 6.13 (with slightly
weaker assumptions).

Property 6.17 can be verified using the method described in sec-
tion 6.4. Basic properties such as 6.15 and 6.16 are checked using just
the bus model B with no assumptions. The fact that caches do not
split their own read-shared commands (6.14) can be verified using just
the processor cache model. To show that WT is not asserted during
shared-response transactions (6.12), we show that for each device

AG(CMD = shared-response — ~d.wt),

and then used these properties as assumptions together with the bus
model. At this point, all assumptions have been discharged. About

204 CHAPTER 6. A CACHE COHERENCE PROTOCOL

two minutes of CPU time were required to verify all of the assumptions
except 6.1 and 6.17. (The time required for these is given in table 6.1.)

Let us now consider a hierarchical configuration (figure 6.5). Sup-
pose that we want to prove property 6.9 for P3. The key point is to
demonstrate that CA always responds to those read-shared transactions
that it splits (property 6.13). We cxpect this to be true since:

1. the system of interlocks that we added to the model will cause
MA to issue a read-shared if needed; and

2. we should be able to prove analog of property 6.9 for read-shared
transactions issued by the memory agent.

P1 P2
MA
P3 CA

M

Bus 2

Bus 1

Figure 6.5: Hierarchical configuration

To try to prove 6.13 for CA, we used the cache agent and mem-
ory agent models. We assumed the latter condition above, plus other

6.6. VERIFYING LIVENESS 205

basic properties such as 6.1 and 6.11. Several iterations were devoted
to getting the interlock mechanism working. Even after this however,
the property was still found to be false. Based on the error trace, we
concluded that 6.9 in fact does not hold in hierarchical systems. The
scenario indicated by the counterexample is the following (refer to fig-
ure 6.5). P1 obtains a exclusive-modified copy of the cache line. At this
point, the bridge is in the remote-ezclusive-modified state. P3 issues
a read-shared on the bottom bus, and CA splits the transaction. An
interlock is set to tell the memory agent to retrieve the data. P2 issues
a read-modified on the top bus, and P1 intervenes and splits the trans-
action. Next, MA sees the interlock and tries to issue a read-shared.
However, since P1 is already processing a split transaction for the line, it
asserts WT and MA acquires the requester-waiting attribute. Now Pl
issues a modified-response and transitions to the invalid state, while P2
goes to exclusive-modified. MA clears the requester-waituig attribute, -
but before it can rearbitrate for the bus, P1 issues a read-modified which
P2 intervenes in and splits. At this point the process repeats: MA tries
to issue a read-shared but is told to wait by P2, and eventually the
modified cache line passes back to P1. Thus, MA never successfully is-
sues the read-shared and never obtains the data. What we have found
is that fair arbitration is not sufficient to guarantee absence of livelock.
(Actually, it is hard to imagine any arbitration scheme that would avoid
this problem. It seems that some sort of quene-based system for record-
ing requests would be required. Because this represents a substantial
change to the protocol, we did not attempt to develop a model that
gnarantees progress. Another possibility would be to require that the
memory agent be sufficiently fast. That is, if the memory agent is gnar-
anteed to rearbitrate immediately to try to issue the read-shared after
it sees the modified-response, and if the arbitration is fair, then it may
be possible to prove progress.)

Overall, our approach of performing assume-guarantee style verifi-
cation by working backwards from the desired property secems to be
fairly natural. Counterexamples from the model checker are used to
guide the selection of appropriate assumptions at each stage. Further,
in situations like the above where the property that we are trying to
verify does not hold, we are eventually led to a counterexample repre-
senting a real error condition. This is an important point, since most

206 CHAPTER 6. A CACHE COHERENCE PROTOCOL

of the verification time and eflort is spent working on incorrect designs.
Assume-guarantee reasoning can still be an effective tool in these siiu-
ations.

6.7 Summary

We have demonstrated our verification techniques using a substantial
example, the IEEE Futurebus+ cache colierence protocol. We con-
structed an abstract model of the protocol and checked whether it sat-
isfied a temporal logic specification of cache coherence. In performing
the verification, we found two errors. We used assume-guarantee rea-
soning to check liveness properties of the protocol. We were able to
show that the single-bus version of the protocol did satisfy our liveness
specification, but that livelocks may occur in a hierarchical configura-
tion.

Chapter 7

Conclusion

We have described methods for doing compositional verification and for
using abstraction in the context of temporal logic model checking. Our
techniques are based on ACTL, a subset of CTL in which we eliminate
the E path quantifier. We showed how to do full assume-guarantee
style reasoning with ACTL, and how to use abstr «ction to verify sys-
tems that manipulate data in non-trivial ways. To demonstrate that our
techniques were practical, we used abstraction and assume-guarantee
style reasoning to verify the IEEE Futurebus+ cache coherence proto-
col. During the verification process, we discovered errors in the [EEE
standard.

While we have considered a number of examples besides the Fu-
turebus+ protocol, we wonld like to gain more experience in trying to
apply our techniques to real systems. We feel that it is particularly im-
portant to look at a single system across several levels of abstraction.
Recall that in the Futurebus+ example, we constructed the abstract
model directly since we did not have a formal low-level model. (While
much of the standard is expressed in terms of boolean attributes, they
are poorly structured, not entirely formal, and incomplete.) As such,
we were not able to automatically apply abstraction via observers or
the techniques described in section 4.2 to this example. It would be
interesting to develop an implementation-level description of one of the
types of Futurebus+ modules (e.g., a processor board) and to try to
show that the model we used is a valid abstraction.

There are also a number of theoretical questions that we would like

207

208 CHAPTER 7. CONCLUSION

to address. One question concerns the exact complexity of the compo-
sitional model checking problem for full CTL. In chapter 2, we showed
that it was NP-hard, and, since our interest is mainly in practical meth-
ods, developed a polynomial-time approximation algorithm. However.
it is not even entirely clear that the problem is decidable. One ap-
proach for showing decidability would be to try to reduce the problem
to a containment problem on tree automata. It is well known that the
set of computation trees satisfying a CTL formula is an w-regular tree
language [46, 81] and is accepted by a finite automata on infinite trees.
If the set of computation trees representing the closed systems that
can be obtained by composition with a given Moore machine is also
w-regular, then the problem can be solved by testing inclusion between
the two automata.

Another problem involves deciding whether < holds between two
arbitrary structures. We believe that we have a polynomial-time algo-
rithm for this problem, but we have not proved it correct. It roughly
involves executing a fixed point computation like that involved in tesi-
ing language inclusion as discussed by Clarke, Draghicesen, and Kur-
shan [26]. However, even if our algorithm is correct, we are not op-
timistic that it will work well in a BDD-based setting. It may be
more important to look for additional approximation algorithms for
this problem.

We believe that it may be possible to use ideas similar to those in
section 4.2 in order to generate abstractions of infinite state systems.
If the program describing the system is written in terms of abstract
data types described by algebraic specifications [65], we believe that
automated theorem proving and terim rewriting techniques could be
used to derive abstract versions of the primitive operators. Of course
the abstracted systems would have to be finite state in order to apply
onr model checking tools. It is not vet clear how conservative these
finite approximations will be.

Finally, there i1s work to be done on helping the user apply the tech-
niques that we have proposed. Our methods require that the user deeide
on appropriate assumptions during an assume-guarantee proof and on
what abstractions to make. It is nnlikely that either of these steps can
be fully automated, but it may be possible to provide hints. For exam-
ple, if the user is trying to verify a system involving a data path, then

~

209

the examples that we verified in chapters 4 and 5 can suggest useful
abstractions. There is also the problem of providing feedback when the
verification fails. Since our verification methods are conservative, the
traces produced by the tools when verifying an abstract model need not
actually correspond to legal executions in the actual system. It may
be possible to use the information from the abstract-level verification
to constrain a lower-level search for an actual error trace. Alterna-
tively, lower-level information might be used to guide the generation of
a meaningful abstract-level counterexample.

210 CHAPTER 7. CONCLUSION

Appendix A

Summary of BDDs

Reduced ordered binary decision diagrams (BDDs) are a canonical form
representation for boolean functions [17]. They are often substantially
more compact than traditional normal forms such as conjunctive nor-
mal. form and disjunctive normal form, and they can be manipulated
very efficiently. Hence, they have become widely used for a variety
of applications, including symbolic simulation, verification of combi-
national logic, logic synthesis, and finite-state verification. A BDD is
similar to a binary decision tree, except that its structure is a directed
acyclic graph rather than a tree, and there is a strict total order placed
on the occurrence of variables as one traverses the graph from root to
leaf. Figure A.l shows an example BDD. It represents the function
(a A b)V (c A d), using the variable ordering a < b < ¢ < d. Given an
assignment of boolean values to the variables «, b, ¢ and d, one can de-
cide whether the assignment makes the function true by traversing the
graph beginning at the root and branching at each node based on the
value assigned to the variable that labels the node. For example, the
assignment {a = 1,b = 0,c = 1,d = 1} leads to a leaf node labeled 1.
hence the function is true for this assignment.

Bryant showed that, given a variable ordering, there is a canonical
BDD for every function [17]. This canonical form is obtained by starting
from an ordered (but not necessarily reduced) binary decision diagram
and applying the following two reduction rules. First, if two nodes ny
and n, in the graph are isomorphic, then we delete 15 and redirect all of
the arcs going into n; so that they point to n;. Second, if the two arcs

211

APPENDIX A. SUMMARY OF BDDS

Figure A.1: A BDD representing (a A b) V (c A d)

213

coming out of a node n; both point to the same node n,, then we delete
ny and redirect all arcs into n; so that they point to n;. Eventually,
we will not be able to apply either rule. At this point, the graph is
a canonical reduced ordered binary decision diagram. The size of a
BDD can depend critically on the variable ordering. For many of the
functions that seem to arise in practice, there are orderings for which
the BDD size is polynomial in the number of variables.

An important property of BDDs is that they degrade gradually:
most operations can be performed in polynomial time, and the results
of those operations are polynomial in the size of the inputs to the
operation. Given BDDs for f and g, logical combinations of these
functions such as fV ¢ and —~f can be computed in time linear in the
product of the sizes of the argument BDDs. Quantification over a single
variable (3z f) is requires polynomial time, but quantification over a set
of variables may be exponential in the number of variables. However, in
practice, quantification is usually efficient since it reduces the number
of variables that the function depends on. Substituting a function g
for the variable r in f is also polynomial. Multiple (simultaneous)
substitution is exponential in the worst case, but again is usually well-
behaved in practice.

In our work, we use BDDs as a means of representing sets, relations,
and functions over finite domains, and for manipulating these objects.
Given a finite domain D, we first encode the elements of D using aset V
of booleai: variables. Let us suppose for simplicity that D has exactly
2* elements and that V consists of k variables. Then every valuation of
the variables in V' corresponds to exactly one element of D. A beolean
function y over V can be identified with the set of valuations that
make the function true. By identifying each such valuation with the
corresponding element of D, we can view y as representing a subset
of D. This is called the characteristie function representation of the
set. Relations over, c.g., DD x D can be represented in a similar way.
except now we need 2k boolean vanables to encode the pairs of elements
of D. Functions are simply viewed as a special case of relations. There
is a close correspondence between set and relational operations and
logical operations on the corresponding characteristic funetions. For
example, if Dy and D, are subsets of D and are represented by xp,
and xp,, respectively, then the characteristic .unction for Dy U Dy is

214 APPENDIX A. SUMMARY OF BDDS

simply xp, V xp,- Other operations that can be performed efficiently
include intersection, quantification over elements of D, functional and

relational composition, etc.

Bibliography

(1]

4]

(5]

(6]

[7)

F. Van Aelten, S. Y. Liao, J. Allen, and S. Devadas. Automatic
generation and verification of sufficient correctness properties for
synchronous processors. In Proceedings of the 1992 [EEE [nter-
national Conference on Computer-Aided Design. IEEE Computer
Society Press, November 1992.

S. A.Kripke. Outline of a theory of truth. Journal of Philosophy,
72:690-716, 1975.

J. Archibald and J.-L. Baer. Cache coherence protocols: Evalua-
tion using a multiprocessor simulation model. ACM Transactions
on Computer Systems, 4(4):273-298, November 1986.

D. L. Beatty, R. E. Bryant, and C.-J. Seger. Formal hardware
verification by symbolic ternary trajectory evaluation. In Proceed-
ings of the 28th ACM/IEEFE Design Automation Conference. [IEEE
Computer Society Press, June 1991.

M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of
branching time. Acta Informatica, 20:207-226, 1983.

S. Bensalem, A. Bouajjani. C. Loiseaux, and J. Sifakis. Property
preserving simulations. In G. V. Bochmann and D. K. Probst.
editors, Proceedings of the Fourth Workshop on Computer-Aided
Verification, July 1992.

J. AL Bergstra and J. W. Klop. Algebra of communicating pro-
cesses with abstraction. Theoretical Computer Science, 37(1):77-

121, 1985.

215

216

(8]

[9)

[10]

(1]

(12]

(13]

[14]

(15]

(16)

[17]

BIBLIOGRAPHY

G. V. Bochmann. Hardware specification with temporal logic: An
example. IEEE Transactions on Computers, C-31(3), March 1982.

S. Bose and A. L. Fisher. Automatic verification of synchronous
circuits using symbolic logic simulation and temporal logic. In
L. Claesen, editor, Proceedings of the IMEC-IFIP International
Workshop on Applied Formal Methods for Correct VLSI Design,
November 1989.

A. Bouajjani, J. C. Fernandez, N. Halbwachs, P. Raymond. and
C. Ratel. Minimal state graph generation. Science of Computer
Programming, 18(3):247-271, June 1992.

K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implemen-
tation of a BDD package. In Proceedings of the 27th ACM/IEEE
Design Automation Conference. IEEE Computer Society Press,
June 1990.

J. Bradfield and C. Stirling. Local model checking for infinite state
spaces. In K. G. Larsen and A. Skou, editors, Proceedings of the

Third Workshop on Computer-Aided Verification, July 1991.

M. C. Browne. An improved algorithm for automatic verification
of finite state machines using temporal logic. In Proceedings of
the First Annual Symposium on Logic in Computer Science, IEEL
Computer Society Press, June 1936.

M. C. Browne. Automatic verification of finite stale machincs
using temporal logic. PhD thesis, Carnegie Mellon University, 1939.

M. C. Browne, E. M. Clarke, D. L. Dill. and B. Mishra. Auto-

matic verification of sequential circuits using temporal logic. IFE]
Transactions on Computers, C-35(12):1035- 1041, 1936.

M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing
finite kripke structures in propositional temporal logic. Theoretical
Computer Science, 59(1-2), July 1938,

R. E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8), 1936.

BIBLIOGRAPHY 217

(18]

19)

[20)

23]

[26)

R. E. Bryant. Symbolic boolean manipulation with ordered bi-
nary decision diagrams. ACM Computing Surveys, 24(3):293-318,
September 1992.

J. Brzozowski. Derivatives of regular expressions. Journal of the

ACM, 11:481-494, 1964.

J. R. Bichi. On a decision method in restricted second order
arithmetic. In Proceedings of the 1960 International Congress on
Logic, Methodology, and Philosophy of Science. Stanford Univer-
sity Press, 1962.

J. R. Burch. Trace Algebra for Automatic Verification of Real-
Time Concurrent Systems. PhD thesis, Carnegie Mellon Univer-
sity, 1992.

J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits
more efficiently in symbolic model checking. In Proceedings of the
28th ACM/IEEFE Design Automation Conference. IEEE Computer
Society Press, June 1991.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Se-
quential circuit verification using symbolic model checking. In Pro-
ceedings of the 27th ACM/IEEE Design Automation Conference.
IEEE Computer Society Press, June 1990.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 10%° states and beyond. Infor-
mation and Computation, 98(2):142-170, June 1992.

L. Claesen, F. Proesmans, E. Verlind, and H. De Man. A method-
ology for the automatic verification of MOS transistor level imple-
mentations from high level behavioral specifications. In Proceed-
ings of the 1991 International Workshop on Formal Mcthods in
VLSI Design, January 1991.

E. M. Clarke, I. A. Draghicescu, and R. P. Kurshau. A unified ap-
proach for showing language containment and equivalence between
various types of w-automata. In A. Arnold and N. D. Jones, edi-
tors, Proceedings of the 15th Colloquium on Trees in Algebra and

218

(27]

(28]

[29]

30]

[31]

(32]

133

[31]

BIBLIOGRAPHY

Programming, volume 407 of Lecture Notes in Computer Science.
Springer-Verlag, May 1990.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. In Logic of Programs:
Workshop, Yorktown Heights, NY, May 1981, volume 131 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifi-
cations. ACM Transactions on Programming Languages and Sys-
tems, 8(2):244-263, 1986.

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L.
McMillan, and L. A. Ness. Verification of the Futurebus+ cache co-
herence protocol. In L. Claesen, editor, Proceedings of the Eleventh
International Symposium on Computer Hardware Description Lan-
guages and their Applications. North-Holland, April 1993.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and
abstraction. In Proceedings of the Nineteenth Annual ACM Sym-
posium on Principles of Programming Languages, January 1992.

E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional
model checking. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science. IEELL Computer Society Press.,
June 1989.

E. M. Clarke, D. E. Long, and K. L. McMillan. A language for
compositional specification and verification of finite state hardware
controllers. Proceedings of the IEEE, 79(9):1283-1292, September
1991.

R. Cleaveland. Tableau-based model checking in the propositional
mu-calculus. Acta Informatica, 27:725-747, 1990.

S. AL Cook. The complexity of theorem proving procedures. In
Proceedings of the Third ACM Symposium on the Theory of Com-
puting, 1971.

BIBLIOGRAPHY 219

(35]

(36]

[37]

(33]

(39]

[40]

[41]

j42]

F. Corella. Automated high-level verification against clocked algo-
rithmic specifications. In L. Claesen, editor, Proceedings of the
Eleventh International Symposium on Computer Hardware De-
scription Languages and their Applications. North-Holland, April
1993.

0. Coudert, C. Berthet, and J. C. Madre. Verification of sequential
machines using boolean functional vectors. In L. Claesen, editor,
Proceedings of the IMEC-IFIP International Workshop on Applied
Formal Methods for Correct VLSI Design, November 1989.

O. Coudert, C. Berthet, and J. C. Madre. Verification of syn-
chronous sequential machines based on symbolic execution. In
J. Sifakis, editor, Proceedings of the 1989 International Work-
shop on Automatic Verification Methods for Finite State Systems,
Grenoble, France, volume 407 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, June 1989.

O. Coudert, C. Berthet, and J. C. Madre. Verifying temporal
properties of sequential machines without building their state dia-
grams. In R. P. Kurshan and E. M. Clarke, editors, Proceedings of
the 1990 Workshop on Computer-Aided Verification, June 1990.

0. Coudert and J. C. Madre. A unified framework for the for-
mal verification of sequential circuits. In Proceedings of the 1990
[EEFE International Conference on Computer-Aided Design. [EEE

Computer Society Press, November 1990.

P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proceedings of the Fourth Annual
ACM Symposium on Principles of Programming Languages, Jan-
uary 1977.

P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proceedings of the Sizth Annual ACM Symposiumn
on Principles of Programming Languages, January 1979.

D. Dams, O. Grumberg, and R. Gerth. Generation of reduced
models for checking fragments of CTL. Submitted for publication.

220 BIBLIOGRAPHY

(43] D. L. Dill. Trace Theory for Automatic Hierarchical Verification
of Speed-Independent Circuits. ACM Distinguished Dissertations.
MIT Press, 1989.

[44] D. L. Dill and E. M. Clarke. Automatic verification of asvn-
chronous circuits using temporal logic. [EE Proceedings, Part E
133(5), 1986.

(45] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments
of the propositional mu-calculus. In Proceedings of the First An-
nual Symposium on Logic in Computer Science. IEEE Computer
Society Press, June 1986.

[46] E. A. Emerson and A. P. Sistla. Deciding full branching time logic.
Information and Control, 61:175-201, 1984.

[47] T. Filkorn. Functional extension of symbolic model checking. In
K. G. Larsen and A. Skou, editors, Proceedings of the Third Work-
shop on Computer-Aided Verification, July 1991.

(48] T. Filkorn. A method for symbolic verification of synchronous
circuits. In D. Borrione and R. Waxman, editors, Proceedings of
the Tenth International Symposium on Computer Hardware De-
scription Languages and their Applications. North-Holland, April
[991.

[49] M. Fujita. RTL design verification by making use of datapath in-
formation. In Proceedings of the 1992 IFEE International Confer-
ence on Computer Design. IEEE Computer Society Press. October
1992.

[50) P. Godefroid. Using partial orders to imiprove automatic verifica-
tion methods. In R. P. Kurshan and E. M. Clarke. editors. Pro-
ceedings of the 1990 Workshop on Computer-Aided Verification,
June 1990.

[51] S. Graf and B. Steffen. Compositional minimization of finite state
processes. In R. P. Kurshan and E. M. Clarke, editors, Proceedings

of the 1990 Workshop on Computer-Aided Verification, June 1990.

BIBLIOGRAPHY 221

(52]

[59]

[60]

O. Grumberg and D. E. Long. Model checking and modular ver-
ification. In J. C. M. Baeten and J. F. Groote, editors, Proceed-
ings of CONCUR ’91: 2nd International Conference on Concur-
rency Theory, volume 527 of Lecture Notes in Computer Scierce.
Springer- Verlag, August 1991.

Z. Har’El and R. P. Kurshan. The COSPAN user’s guide. Technical
Report 11211-871009-21TM, AT&T Bell Laboratories, 1987.

Z. Har’El and R. P. Kurshan. Software for analytical development
of communications protocols. ATET Technical Journal, 69(1):45-
59, Jan.-Feb. 1990.

M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

M. Hennessy and R. Milner. Algebraic laws for non-determinism
and concurrency. Journal of the ACM, 32:137-161, 1985.

C. A. R. Hoare. Communicating Sequential Processes. Prentice

Hall, 1985.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[EEE Computer Society. [EEE Standard for Futurebus+-—Logical
Protocol Specification, March 1992, IEEE Standard 396.1-1991.

B. Josko. Verifying the correctness of AADL-modules using model
checking. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg,
editors, Proceedings of the REX Workshop on Stepwise Refinement
of Distributed Systems, Models, Formalisms, Correctness, volume
130 of Lecture Notes in Computer Seience. Springer-Verlag, May
1939.

T. Kidder. The Soul of a New Machine. Avon. 1982, B*: “Big
Brown Bag”.

R. P. Kurshan. Analysis of diserete event coordination. In J. W,
de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Procced-
ings of the REX Workshop on Stepwise Refinement of Distributed

o
[
[

(63]

[64]

[65]

[66]

BIBLIOGRAPHY

Sys?ems, Models, Formalisms, Correctness, volume 430 of Lecture
Notes in Computer Science. Springer-Verlag, May 1989.

R. P. Kurshan and K. L. McMillan. A structural induction the-
orem for processes. In Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing. ACM Press,
August 1989.

O. Lichtenstein and A. Pnueli. Checking that finite state concur-
rent programs satisfy their linear specification. In Proceedings of
the Twelfth Annual ACM Symposium on Principles of Program-
ming Languages, January 1985.

B. Liskov and J. Guttag. Abstraction and Specification in Program
Development. MIT Press, 1986.

Y. Malachi and S. S. Owicki. Temporal specifications of self-timed
systems. In H. T. Kung, B. Sproull, and G. Steele, editors, VLS/
Systems and Computations. Computer Science Press, 1931,

K. L. McMillan. Symbolic Model Checking: An Approach to the
State Ezplosion Problem. PhD thesis, Carnegie Mellon University.
1992,

K. L. McMillan and J. Schwaibe. Formal verification of the Encore
Gigamax cache consistency protocol. In Proceedings of the 1591 [n-
ternational Symposium on Shared Mcemory Multiprocessors, April
1991.

1. HL Mealy, A method for synthesizing sequential cirenits. Bell
System Technical Journal, 31(5): 1015 1079, 1955,

R. Milner. An algebraic detinition of simulation between programs.
In Proceedings of the Second Internation Joint Conference on Ar-
tificial Intelligence, September 1971.

R. Milner. A Calculus of Comununicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer-Verlag, 1980.

BIBLIOGRAPHY 223

(72]

(73]

[74]

(78]

[79]

(30]

81)

(82]

E. F. Moore. Gedanken experiments on sequential machines. In
Automata Studies. Princeton University Press, 1956.

A. Mycroft. Abstract Interpretation and Optimizing Transforma-
tions for Applicative Programs. PhD thesis, University of Edin-
burgh, 1981.

F. Nielson. A denotational framework for data flow analysis. Acta
Informatica, 18:265-287, 1982.

A. Pnueli. The temporal semantics of concurrent programs. In
Proceedings of the Fighteenth Annual Symposium on Foundations
of Computer Science, 1977.

A. Pnueli. A temporal logic of concurrent programs. Theoretical
Computer Science, 13:45-60, 1981.

A. Pnueli. In transition for global to modular temporal reason-
ing about programs. In K. R. Apt, editor, Logics and Models of
Concurrent Systems, volume 13 of NATO ASI series. Series F,
Computer and system sciences. Springer-Verlag, 1984.

A. Pnueli and R. Sherman. Semantic tableau for temporal logic.
Technical Report CS81-21, The Weizmann Institute, 1981.

D. K. Probst and H. F. Li. Using partial order semantics to avoid
the state explosion problem in asynchronous systems. In R. P. Kur-
shan and E. M. Clarke, editors, Proceedings of the 1990 Workshop
on Computer-Aided Verification, June 1990.

J.P. Quielle and J. Sifakis. Specification and verification of concur-
rent systems in CESAR. In Proceedings of the Fifth [nternational
Symposium in Programnung, 1981.

M. O. Rabin. Decidability of second order theories and antomata
on infinite trees. Transactions of the American Mathematical So-
ciely, 141:1-35, 1969.

N. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag,
1971.

224
(83]

(84]

[85]

[36]

(87]

(33]

(89]

[90]

[91]

BIBLIOGRAPHY

C. L. Seitz. Ideas about arbiters. Lambda, 10(4), 1980.

Z. Shtadler and O. Grumberg. Network grammars, communication
behaviors and automatic verification. In J. Sifakis, editor, Proceed-
ings of the 1989 International Workshop on Automatic Verification
Methods for Finite State Systems, Grenoble, France, volume 407
of Lecture Notes in Computer Science. Springer-Verlag, June 1989.

G. Shurek and O. Grumberg. The modular framework of computer-
aided verification: Motivation, solutions and evaluation criteria. In
R. P. Kurshan and E. M. Clarke, editors, Proceedings of the 1990
Workshop on Computer-Aided Verification, June 1990.

C. Stirling and D. J. Walker. Local model checking in the modal
mu-calculus. In J. Diaz and F. Orejas, editors, Proceedings of the
1989 International Joint Conference on Theory and Practice of
Software Development, volume 351-352 of Lecture Notes in Com-
puter Science. Springer-Verlag, March 1989.

R. S. Streett. A propositional dynamic logic of looping and con-
verse. Information and Control, 54:121-141, 1982.

A. Tarski. A lattic-theoretic fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285-309. 1955.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines
using BDD’s. In Proceedings of the 1990 IEEE [nternational Con-
ference on Computer-Aided Design. IEEE Computer Society Press,
November 1990.

A. Valmari. Stubborn sets for reduced state space generation. lu
Proceedings of the Tenth International Conference on Application
and Theory of Petri Nets, 1989.

A. Valmari. A stubborn attack on the state explosion problem. In
R. P. Kurshan and E. M. Clarke, editors, Procecedings of the 1990
Workshop on Computer-Aided Verification, June 1990.

BIBLIOGRAPHY 225

[92) M. Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification. In Proceedings of the First An-
nual Symposium on Logic in Computer Science. IEEE Computer
Society Press, June 1986.

[93] G. Winskel. Compositional checking of validity on finite state
processes. Draft copy.

(94] G. Winskel. Model checking in the modal v-calculus. In Pro-
ceedings of the Sizteenth International Colloquium on Automata,
Languages, and Programming, 1989.

(95] P. Wolper. Temporal logic can be more expressive. [nformation

and Control, 56:72-99, 1983.

[96] P. Wolper. Expressing interesting properties of programs in propo-
sitional temporal logic. In Proceedings of the Thirteenth Annual
ACM Symposium on Principles of Programming Languages, Jan-
uary 1986.

[97) P. Wolper and V. Lovinfosse. Verifying properties of large sets of
processes with network invariants. In J. Sifakis, editor, Proceed-
ings of the 1989 International Workshop on Automatic Verification
Methods for Finite State Systems, Grenoble, France, volume 407
of Lecture Notes in Computer Science. Springer-Verlag, June 1989.

